Skip to content

vllm.config

Modules:

Name Description
cache
compilation
kv_events
kv_transfer
load
lora
model
multimodal
parallel
pooler
scheduler
speculative
structured_outputs
utils

BaseModelLoader module-attribute

BaseModelLoader = Any

DataclassInstanceT module-attribute

DataclassInstanceT = TypeVar(
    "DataclassInstanceT", bound=DataclassInstance
)

DetailedTraceModules module-attribute

DetailedTraceModules = Literal['model', 'worker', 'all']

Device module-attribute

Device = Literal['auto', 'cuda', 'cpu', 'tpu', 'xpu']

LogitsProcessor module-attribute

LogitsProcessor = Any

QuantizationMethods module-attribute

QuantizationMethods = Any

T module-attribute

T = TypeVar('T')

_current_prefix module-attribute

_current_prefix: Optional[str] = None

_current_vllm_config module-attribute

_current_vllm_config: Optional[VllmConfig] = None

logger module-attribute

logger = init_logger(__name__)

DeviceConfig

Configuration for the device to use for vLLM execution.

Source code in vllm/config/__init__.py
@config
@dataclass(config=ConfigDict(arbitrary_types_allowed=True))
class DeviceConfig:
    """Configuration for the device to use for vLLM execution."""

    device: SkipValidation[Optional[Union[Device, torch.device]]] = "auto"
    """Device type for vLLM execution.
    This parameter is deprecated and will be
    removed in a future release.
    It will now be set automatically based
    on the current platform."""
    device_type: str = field(init=False)
    """Device type from the current platform. This is set in
    `__post_init__`."""

    def compute_hash(self) -> str:
        """
        WARNING: Whenever a new field is added to this config,
        ensure that it is included in the factors list if
        it affects the computation graph.

        Provide a hash that uniquely identifies all the configs
        that affect the structure of the computation
        graph from input ids/embeddings to the final hidden states,
        excluding anything before input ids/embeddings and after
        the final hidden states.
        """
        # no factors to consider.
        # the device/platform information will be summarized
        # by torch/vllm automatically.
        factors: list[Any] = []
        hash_str = hashlib.md5(str(factors).encode(),
                               usedforsecurity=False).hexdigest()
        return hash_str

    def __post_init__(self):
        if self.device == "auto":
            # Automated device type detection
            from vllm.platforms import current_platform
            self.device_type = current_platform.device_type
            if not self.device_type:
                raise RuntimeError(
                    "Failed to infer device type, please set "
                    "the environment variable `VLLM_LOGGING_LEVEL=DEBUG` "
                    "to turn on verbose logging to help debug the issue.")
        else:
            # Device type is assigned explicitly
            if isinstance(self.device, str):
                self.device_type = self.device
            elif isinstance(self.device, torch.device):
                self.device_type = self.device.type

        # Some device types require processing inputs on CPU
        if self.device_type in ["tpu"]:
            self.device = None
        else:
            # Set device with device type
            self.device = torch.device(self.device_type)

device class-attribute instance-attribute

device: SkipValidation[Optional[Union[Device, device]]] = (
    "auto"
)

Device type for vLLM execution. This parameter is deprecated and will be removed in a future release. It will now be set automatically based on the current platform.

device_type class-attribute instance-attribute

device_type: str = field(init=False)

Device type from the current platform. This is set in __post_init__.

__post_init__

__post_init__()
Source code in vllm/config/__init__.py
def __post_init__(self):
    if self.device == "auto":
        # Automated device type detection
        from vllm.platforms import current_platform
        self.device_type = current_platform.device_type
        if not self.device_type:
            raise RuntimeError(
                "Failed to infer device type, please set "
                "the environment variable `VLLM_LOGGING_LEVEL=DEBUG` "
                "to turn on verbose logging to help debug the issue.")
    else:
        # Device type is assigned explicitly
        if isinstance(self.device, str):
            self.device_type = self.device
        elif isinstance(self.device, torch.device):
            self.device_type = self.device.type

    # Some device types require processing inputs on CPU
    if self.device_type in ["tpu"]:
        self.device = None
    else:
        # Set device with device type
        self.device = torch.device(self.device_type)

compute_hash

compute_hash() -> str

WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.

Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.

Source code in vllm/config/__init__.py
def compute_hash(self) -> str:
    """
    WARNING: Whenever a new field is added to this config,
    ensure that it is included in the factors list if
    it affects the computation graph.

    Provide a hash that uniquely identifies all the configs
    that affect the structure of the computation
    graph from input ids/embeddings to the final hidden states,
    excluding anything before input ids/embeddings and after
    the final hidden states.
    """
    # no factors to consider.
    # the device/platform information will be summarized
    # by torch/vllm automatically.
    factors: list[Any] = []
    hash_str = hashlib.md5(str(factors).encode(),
                           usedforsecurity=False).hexdigest()
    return hash_str

ObservabilityConfig

Configuration for observability - metrics and tracing.

Source code in vllm/config/__init__.py
@config
@dataclass
class ObservabilityConfig:
    """Configuration for observability - metrics and tracing."""

    show_hidden_metrics_for_version: Optional[str] = None
    """Enable deprecated Prometheus metrics that have been hidden since the
    specified version. For example, if a previously deprecated metric has been
    hidden since the v0.7.0 release, you use
    `--show-hidden-metrics-for-version=0.7` as a temporary escape hatch while
    you migrate to new metrics. The metric is likely to be removed completely
    in an upcoming release."""

    @cached_property
    def show_hidden_metrics(self) -> bool:
        """Check if the hidden metrics should be shown."""
        if self.show_hidden_metrics_for_version is None:
            return False
        return version._prev_minor_version_was(
            self.show_hidden_metrics_for_version)

    otlp_traces_endpoint: Optional[str] = None
    """Target URL to which OpenTelemetry traces will be sent."""

    collect_detailed_traces: Optional[list[DetailedTraceModules]] = None
    """It makes sense to set this only if `--otlp-traces-endpoint` is set. If
    set, it will collect detailed traces for the specified modules. This
    involves use of possibly costly and or blocking operations and hence might
    have a performance impact.

    Note that collecting detailed timing information for each request can be
    expensive."""

    @cached_property
    def collect_model_forward_time(self) -> bool:
        """Whether to collect model forward time for the request."""
        return (self.collect_detailed_traces is not None
                and ("model" in self.collect_detailed_traces
                     or "all" in self.collect_detailed_traces))

    @cached_property
    def collect_model_execute_time(self) -> bool:
        """Whether to collect model execute time for the request."""
        return (self.collect_detailed_traces is not None
                and ("worker" in self.collect_detailed_traces
                     or "all" in self.collect_detailed_traces))

    def compute_hash(self) -> str:
        """
        WARNING: Whenever a new field is added to this config,
        ensure that it is included in the factors list if
        it affects the computation graph.

        Provide a hash that uniquely identifies all the configs
        that affect the structure of the computation
        graph from input ids/embeddings to the final hidden states,
        excluding anything before input ids/embeddings and after
        the final hidden states.
        """
        # no factors to consider.
        # this config will not affect the computation graph.
        factors: list[Any] = []
        hash_str = hashlib.md5(str(factors).encode(),
                               usedforsecurity=False).hexdigest()
        return hash_str

    def __post_init__(self):
        if (self.collect_detailed_traces is not None
                and len(self.collect_detailed_traces) == 1
                and "," in self.collect_detailed_traces[0]):
            self._parse_collect_detailed_traces()

        from vllm.tracing import is_otel_available, otel_import_error_traceback
        if not is_otel_available() and self.otlp_traces_endpoint is not None:
            raise ValueError(
                "OpenTelemetry is not available. Unable to configure "
                "'otlp_traces_endpoint'. Ensure OpenTelemetry packages are "
                f"installed. Original error:\n{otel_import_error_traceback}")

    def _parse_collect_detailed_traces(self):
        assert isinstance(self.collect_detailed_traces, list)
        self.collect_detailed_traces = cast(
            list[DetailedTraceModules],
            self.collect_detailed_traces[0].split(","))

collect_detailed_traces class-attribute instance-attribute

collect_detailed_traces: Optional[
    list[DetailedTraceModules]
] = None

It makes sense to set this only if --otlp-traces-endpoint is set. If set, it will collect detailed traces for the specified modules. This involves use of possibly costly and or blocking operations and hence might have a performance impact.

Note that collecting detailed timing information for each request can be expensive.

collect_model_execute_time cached property

collect_model_execute_time: bool

Whether to collect model execute time for the request.

collect_model_forward_time cached property

collect_model_forward_time: bool

Whether to collect model forward time for the request.

otlp_traces_endpoint class-attribute instance-attribute

otlp_traces_endpoint: Optional[str] = None

Target URL to which OpenTelemetry traces will be sent.

show_hidden_metrics cached property

show_hidden_metrics: bool

Check if the hidden metrics should be shown.

show_hidden_metrics_for_version class-attribute instance-attribute

show_hidden_metrics_for_version: Optional[str] = None

Enable deprecated Prometheus metrics that have been hidden since the specified version. For example, if a previously deprecated metric has been hidden since the v0.7.0 release, you use --show-hidden-metrics-for-version=0.7 as a temporary escape hatch while you migrate to new metrics. The metric is likely to be removed completely in an upcoming release.

__post_init__

__post_init__()
Source code in vllm/config/__init__.py
def __post_init__(self):
    if (self.collect_detailed_traces is not None
            and len(self.collect_detailed_traces) == 1
            and "," in self.collect_detailed_traces[0]):
        self._parse_collect_detailed_traces()

    from vllm.tracing import is_otel_available, otel_import_error_traceback
    if not is_otel_available() and self.otlp_traces_endpoint is not None:
        raise ValueError(
            "OpenTelemetry is not available. Unable to configure "
            "'otlp_traces_endpoint'. Ensure OpenTelemetry packages are "
            f"installed. Original error:\n{otel_import_error_traceback}")

_parse_collect_detailed_traces

_parse_collect_detailed_traces()
Source code in vllm/config/__init__.py
def _parse_collect_detailed_traces(self):
    assert isinstance(self.collect_detailed_traces, list)
    self.collect_detailed_traces = cast(
        list[DetailedTraceModules],
        self.collect_detailed_traces[0].split(","))

compute_hash

compute_hash() -> str

WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.

Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.

Source code in vllm/config/__init__.py
def compute_hash(self) -> str:
    """
    WARNING: Whenever a new field is added to this config,
    ensure that it is included in the factors list if
    it affects the computation graph.

    Provide a hash that uniquely identifies all the configs
    that affect the structure of the computation
    graph from input ids/embeddings to the final hidden states,
    excluding anything before input ids/embeddings and after
    the final hidden states.
    """
    # no factors to consider.
    # this config will not affect the computation graph.
    factors: list[Any] = []
    hash_str = hashlib.md5(str(factors).encode(),
                           usedforsecurity=False).hexdigest()
    return hash_str

SpeechToTextConfig

Configuration for speech-to-text models.

Source code in vllm/config/__init__.py
@config
@dataclass
class SpeechToTextConfig:
    """Configuration for speech-to-text models."""

    sample_rate: float = 16_000
    """Sample rate (Hz) to resample input audio to. Most speech models expect
    16kHz audio input. The input audio will be automatically resampled to this
    rate before processing."""

    max_audio_clip_s: int = 30
    """Maximum duration in seconds for a single audio clip without chunking.
    Audio longer than this will be split into smaller chunks if
    `allow_audio_chunking` evaluates to True, otherwise it will be rejected."""

    overlap_chunk_second: int = 1
    """Overlap duration in seconds between consecutive audio chunks when
    splitting long audio. This helps maintain context across chunk boundaries
    and improves transcription quality at split points."""

    min_energy_split_window_size: Optional[int] = 1600
    """Window size in samples for finding low-energy (quiet) regions to split
    audio chunks. The algorithm looks for the quietest moment within this
    window to minimize cutting through speech. Default 1600 samples ≈ 100ms
    at 16kHz. If None, no chunking will be done."""

    @property
    def allow_audio_chunking(self) -> bool:
        return self.min_energy_split_window_size is not None

allow_audio_chunking property

allow_audio_chunking: bool

max_audio_clip_s class-attribute instance-attribute

max_audio_clip_s: int = 30

Maximum duration in seconds for a single audio clip without chunking. Audio longer than this will be split into smaller chunks if allow_audio_chunking evaluates to True, otherwise it will be rejected.

min_energy_split_window_size class-attribute instance-attribute

min_energy_split_window_size: Optional[int] = 1600

Window size in samples for finding low-energy (quiet) regions to split audio chunks. The algorithm looks for the quietest moment within this window to minimize cutting through speech. Default 1600 samples ≈ 100ms at 16kHz. If None, no chunking will be done.

overlap_chunk_second class-attribute instance-attribute

overlap_chunk_second: int = 1

Overlap duration in seconds between consecutive audio chunks when splitting long audio. This helps maintain context across chunk boundaries and improves transcription quality at split points.

sample_rate class-attribute instance-attribute

sample_rate: float = 16000

Sample rate (Hz) to resample input audio to. Most speech models expect 16kHz audio input. The input audio will be automatically resampled to this rate before processing.

SupportsHash

Bases: Protocol

Source code in vllm/config/__init__.py
@runtime_checkable
class SupportsHash(Protocol):

    def compute_hash(self) -> str:
        ...

compute_hash

compute_hash() -> str
Source code in vllm/config/__init__.py
def compute_hash(self) -> str:
    ...

SupportsMetricsInfo

Bases: Protocol

Source code in vllm/config/__init__.py
class SupportsMetricsInfo(Protocol):

    def metrics_info(self) -> dict[str, str]:
        ...

metrics_info

metrics_info() -> dict[str, str]
Source code in vllm/config/__init__.py
def metrics_info(self) -> dict[str, str]:
    ...

VllmConfig

Dataclass which contains all vllm-related configuration. This simplifies passing around the distinct configurations in the codebase.

Source code in vllm/config/__init__.py
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
@config
@dataclass(config=ConfigDict(arbitrary_types_allowed=True))
class VllmConfig:
    """Dataclass which contains all vllm-related configuration. This
    simplifies passing around the distinct configurations in the codebase.
    """

    # TODO: use default_factory once default constructing ModelConfig doesn't
    # try to download a model
    model_config: ModelConfig = None  # type: ignore
    """Model configuration."""
    cache_config: CacheConfig = field(default_factory=CacheConfig)
    """Cache configuration."""
    parallel_config: ParallelConfig = field(default_factory=ParallelConfig)
    """Parallel configuration."""
    scheduler_config: SchedulerConfig = field(default_factory=SchedulerConfig)
    """Scheduler configuration."""
    device_config: DeviceConfig = field(default_factory=DeviceConfig)
    """Device configuration."""
    load_config: LoadConfig = field(default_factory=LoadConfig)
    """Load configuration."""
    lora_config: Optional[LoRAConfig] = None
    """LoRA configuration."""
    speculative_config: Optional[SpeculativeConfig] = None
    """Speculative decoding configuration."""
    structured_outputs_config: StructuredOutputsConfig = field(
        default_factory=StructuredOutputsConfig)
    """Structured outputs configuration."""
    observability_config: Optional[ObservabilityConfig] = None
    """Observability configuration."""
    quant_config: Optional[QuantizationConfig] = None
    """Quantization configuration."""
    compilation_config: CompilationConfig = field(
        default_factory=CompilationConfig)
    """`torch.compile` and cudagraph capture configuration for the model.

    As a shorthand, `-O<n>` can be used to directly specify the compilation
    level `n`: `-O3` is equivalent to `-O.level=3` (same as `-O='{"level":3}'`).
    Currently, -O <n> and -O=<n> are supported as well but this will likely be
    removed in favor of clearer -O<n> syntax in the future.

    NOTE: level 0 is the default level without any optimization. level 1 and 2
    are for internal testing only. level 3 is the recommended level for
    production, also default in V1.

    You can specify the full compilation config like so:
    `{"level": 3, "cudagraph_capture_sizes": [1, 2, 4, 8]}`
    """
    kv_transfer_config: Optional[KVTransferConfig] = None
    """The configurations for distributed KV cache transfer."""
    kv_events_config: Optional[KVEventsConfig] = None
    """The configurations for event publishing."""
    # some opaque config, only used to provide additional information
    # for the hash computation, mainly used for testing, debugging or out of
    # tree config registration.
    additional_config: Union[dict, SupportsHash] = field(default_factory=dict)
    """Additional config for specified platform. Different platforms may
    support different configs. Make sure the configs are valid for the platform
    you are using. Contents must be hashable."""
    instance_id: str = ""
    """The ID of the vLLM instance."""

    def compute_hash(self) -> str:
        """
        WARNING: Whenever a new field is added to this config,
        ensure that it is included in the factors list if
        it affects the computation graph.

        Provide a hash that uniquely identifies all the configs
        that affect the structure of the computation
        graph from input ids/embeddings to the final hidden states,
        excluding anything before input ids/embeddings and after
        the final hidden states.
        """
        factors: list[Any] = []

        # summarize vllm config
        vllm_factors: list[Any] = []
        from vllm import __version__
        vllm_factors.append(__version__)
        vllm_factors.append(envs.VLLM_USE_V1)
        if self.model_config:
            vllm_factors.append(self.model_config.compute_hash())
        else:
            vllm_factors.append("None")
        if self.cache_config:
            vllm_factors.append(self.cache_config.compute_hash())
        else:
            vllm_factors.append("None")
        if self.parallel_config:
            vllm_factors.append(self.parallel_config.compute_hash())
        else:
            vllm_factors.append("None")
        if self.scheduler_config:
            vllm_factors.append(self.scheduler_config.compute_hash())
        else:
            vllm_factors.append("None")
        if self.device_config:
            vllm_factors.append(self.device_config.compute_hash())
        else:
            vllm_factors.append("None")
        if self.load_config:
            vllm_factors.append(self.load_config.compute_hash())
        else:
            vllm_factors.append("None")
        if self.lora_config:
            vllm_factors.append(self.lora_config.compute_hash())
            # LoRA creates static buffers based on max_num_batched_tokens.
            # The tensor sizes and strides get captured in the torch.compile
            # graph explicitly.
            vllm_factors.append(
                str(self.scheduler_config.max_num_batched_tokens))
        else:
            vllm_factors.append("None")
        if self.speculative_config:
            vllm_factors.append(self.speculative_config.compute_hash())
        else:
            vllm_factors.append("None")
        if self.structured_outputs_config:
            vllm_factors.append(self.structured_outputs_config.compute_hash())
        else:
            vllm_factors.append("None")
        if self.observability_config:
            vllm_factors.append(self.observability_config.compute_hash())
        else:
            vllm_factors.append("None")
        if self.quant_config:
            pass  # should be captured by model_config.quantization
        if self.compilation_config:
            vllm_factors.append(self.compilation_config.compute_hash())
        else:
            vllm_factors.append("None")
        if self.kv_transfer_config:
            vllm_factors.append(self.kv_transfer_config.compute_hash())
        else:
            vllm_factors.append("None")
        if self.additional_config:
            if isinstance(additional_config := self.additional_config, dict):
                additional_config_hash = hashlib.md5(
                    json.dumps(additional_config, sort_keys=True).encode(),
                    usedforsecurity=False,
                ).hexdigest()
            else:
                additional_config_hash = additional_config.compute_hash()
            vllm_factors.append(additional_config_hash)
        else:
            vllm_factors.append("None")
        factors.append(vllm_factors)

        hash_str = hashlib.md5(str(factors).encode(),
                               usedforsecurity=False).hexdigest()[:10]
        return hash_str

    def pad_for_cudagraph(self, batch_size: int) -> int:
        # if batch_size > self.compilation_config.max_capture_size,
        # it should raise an IndexError.
        # the caller should make sure the batch_size is within the range,
        # i.e., batch_size <= self.compilation_config.max_capture_size
        return self.compilation_config.bs_to_padded_graph_size[batch_size]

    @staticmethod
    def _get_quantization_config(
            model_config: ModelConfig,
            load_config: LoadConfig) -> Optional[QuantizationConfig]:
        """Get the quantization config."""
        from vllm.platforms import current_platform
        if model_config.quantization is not None:
            from vllm.model_executor.model_loader.weight_utils import (
                get_quant_config)
            quant_config = get_quant_config(model_config, load_config)
            capability_tuple = current_platform.get_device_capability()

            if capability_tuple is not None:
                capability = capability_tuple.to_int()
                if capability < quant_config.get_min_capability():
                    raise ValueError(
                        f"The quantization method {model_config.quantization} "
                        "is not supported for the current GPU. Minimum "
                        f"capability: {quant_config.get_min_capability()}. "
                        f"Current capability: {capability}.")
            supported_dtypes = quant_config.get_supported_act_dtypes()
            if model_config.dtype not in supported_dtypes:
                raise ValueError(
                    f"{model_config.dtype} is not supported for quantization "
                    f"method {model_config.quantization}. Supported dtypes: "
                    f"{supported_dtypes}")
            return quant_config
        return None

    @staticmethod
    def get_quantization_config(
            model_config: ModelConfig,
            load_config: LoadConfig) -> Optional[QuantizationConfig]:
        import copy

        # For some reason, the _ version of this modifies the model_config
        # object, so using deepcopy to avoid this problem.
        return VllmConfig._get_quantization_config(copy.deepcopy(model_config),
                                                   load_config)

    def with_hf_config(
        self,
        hf_config: PretrainedConfig,
        architectures: Optional[list[str]] = None,
    ) -> "VllmConfig":
        if architectures is not None:
            hf_config = copy.deepcopy(hf_config)
            hf_config.architectures = architectures

        model_config = copy.deepcopy(self.model_config)
        model_config.hf_config = hf_config

        return replace(self, model_config=model_config)

    def __post_init__(self):
        """Verify configs are valid & consistent with each other.
        """

        self.try_verify_and_update_config()

        if self.model_config is not None:
            self.model_config.verify_with_parallel_config(self.parallel_config)
            self.model_config.verify_dual_chunk_attention_config(
                self.load_config)

        self.cache_config.verify_with_parallel_config(self.parallel_config)

        if self.lora_config is not None:
            self.lora_config.verify_with_cache_config(self.cache_config)
            self.lora_config.verify_with_model_config(self.model_config)

        if self.quant_config is None and self.model_config is not None:
            self.quant_config = VllmConfig._get_quantization_config(
                self.model_config, self.load_config)

        from vllm.platforms import current_platform
        if self.model_config is not None and \
            self.scheduler_config.chunked_prefill_enabled and \
            self.model_config.dtype == torch.float32 and \
            current_platform.get_device_capability() == (7, 5):
            logger.warning_once(
                "Turing devices tensor cores do not support float32 matmul. "
                "To workaround this limitation, vLLM will set 'ieee' input "
                "precision for chunked prefill triton kernels.")

        # If the user does not explicitly set a compilation level, then
        # we use the default level. The default level depends on other
        # settings (see the below code).
        if self.compilation_config.level is None:
            if envs.VLLM_USE_V1:
                if (self.model_config is not None
                        and not self.model_config.enforce_eager):
                    self.compilation_config.level = CompilationLevel.PIECEWISE
                else:
                    self.compilation_config.level = \
                            CompilationLevel.NO_COMPILATION

            else:
                # NB: Passing both --enforce-eager and a compilation level
                # in V0 means the compilation level wins out.
                self.compilation_config.level = CompilationLevel.NO_COMPILATION

        # async tp is built on top of sequence parallelism
        # and requires it to be enabled.
        if self.compilation_config.pass_config.enable_async_tp:
            self.compilation_config.pass_config.enable_sequence_parallelism = \
                True
        if self.compilation_config.pass_config.enable_sequence_parallelism:
            self.compilation_config.custom_ops.append("+rms_norm")

        if current_platform.support_static_graph_mode():
            # if cudagraph_mode is not explicitly set by users, set default
            # value
            if self.compilation_config.cudagraph_mode is None:
                if envs.VLLM_USE_V1 and self.compilation_config.level \
                    == CompilationLevel.PIECEWISE:
                    self.compilation_config.cudagraph_mode = \
                        CUDAGraphMode.PIECEWISE
                else:
                    self.compilation_config.cudagraph_mode = CUDAGraphMode.NONE

            # disable cudagraph when enforce eager execution
            if self.model_config is not None and \
                    self.model_config.enforce_eager:
                logger.info("Cudagraph is disabled under eager mode")
                self.compilation_config.cudagraph_mode = CUDAGraphMode.NONE
            elif envs.VLLM_USE_V1:
                self.compilation_config.cudagraph_num_of_warmups = 1

            self._set_cudagraph_sizes()
        else:
            self.compilation_config.cudagraph_mode = CUDAGraphMode.NONE

        if self.cache_config.cpu_offload_gb > 0 and \
            self.compilation_config.level != CompilationLevel.NO_COMPILATION \
                and not envs.VLLM_USE_V1:
            logger.warning(
                "CPU offload is not supported with `torch.compile` in v0 yet."
                " Disabling `torch.compile`.")
            self.compilation_config.level = CompilationLevel.NO_COMPILATION

        if self.cache_config.kv_sharing_fast_prefill:
            if not envs.VLLM_USE_V1:
                raise NotImplementedError(
                    "Fast prefill optimization for KV sharing is not supported "
                    "in V0 currently.")

            if self.speculative_config is not None and \
                self.speculative_config.use_eagle():
                raise NotImplementedError(
                    "Fast prefill optimization for KV sharing is not "
                    "compatible with EAGLE as EAGLE requires correct logits "
                    "for all tokens while fast prefill gives incorrect logits "
                    "for prompt tokens.")

            logger.warning_once(
                "--kv-sharing-fast-prefill requires changes on model side for "
                "correctness and to realize prefill savings. ")

        if ((not envs.VLLM_USE_V1) and self.lora_config is not None
                and self.compilation_config.level
                != CompilationLevel.NO_COMPILATION):
            logger.warning(
                "LoRA for V0 is not supported with `torch.compile` yet. "
                "Disabling `torch.compile`.")
            self.compilation_config.level = CompilationLevel.NO_COMPILATION

        disable_chunked_prefill_reasons: list[str] = []

        if self.model_config:
            if self.model_config.pooler_config:
                pooling_type = self.model_config.pooler_config.pooling_type
                if pooling_type is None or pooling_type.lower() != "last":
                    disable_chunked_prefill_reasons.append(
                        "Only \"last\" pooling supports chunked "
                        "prefill and prefix caching; disabling both.")
                if not getattr(self.model_config.hf_config, "is_causal", True):
                    disable_chunked_prefill_reasons.append(
                        "Only models using causal attention supports chunked "
                        "prefill and prefix caching; disabling both.")
            elif self.model_config.is_encoder_decoder:
                self.scheduler_config.max_num_encoder_input_tokens = \
                    MULTIMODAL_REGISTRY.get_encdec_max_encoder_len(self.model_config)
                logger.debug(
                    "Encoder-decoder model detected: setting "
                    "`max_num_encoder_input_tokens` to encoder length (%s)",
                    self.scheduler_config.max_num_encoder_input_tokens)
                self.scheduler_config.disable_chunked_mm_input = True
                disable_chunked_prefill_reasons.append(
                    "Encoder-decoder models do not support chunked prefill nor"
                    " prefix caching; disabling both.")
                if (self.model_config.architecture
                        == "WhisperForConditionalGeneration"
                        and os.environ.get("VLLM_WORKER_MULTIPROC_METHOD")
                        != "spawn"):
                    logger.warning(
                        "Whisper is known to have issues with "
                        "forked workers. If startup is hanging, "
                        "try setting 'VLLM_WORKER_MULTIPROC_METHOD' "
                        "to 'spawn'.")

        if disable_chunked_prefill_reasons:
            for reason in disable_chunked_prefill_reasons:
                logger.info(reason)
            self.scheduler_config.chunked_prefill_enabled = False
            self.scheduler_config.long_prefill_token_threshold = 0

            if self.cache_config is not None:
                self.cache_config.enable_prefix_caching = False

        if (self.kv_events_config is not None
                and self.kv_events_config.enable_kv_cache_events
                and not self.cache_config.enable_prefix_caching):
            logger.warning(
                "KV cache events are on, but prefix caching is not enabled."
                "Use --enable-prefix-caching to enable.")
        if (self.kv_events_config is not None
                and self.kv_events_config.publisher != "null"
                and not self.kv_events_config.enable_kv_cache_events):
            logger.warning("KV cache events are disabled,"
                           "but the scheduler is configured to publish them."
                           "Modify KVEventsConfig.enable_kv_cache_events"
                           "to True to enable.")
        current_platform.check_and_update_config(self)

        # final check of cudagraph mode after platform-specific update
        if envs.VLLM_USE_V1 and current_platform.is_cuda_alike():
            if self.compilation_config.cudagraph_mode == CUDAGraphMode.FULL \
                and self.model_config is not None and \
                not self.model_config.disable_cascade_attn:
                logger.info("CUDAGraphMode.FULL is not supported with "
                            "cascade attention currently. Disabling cascade"
                            "attention.")
                self.model_config.disable_cascade_attn = True

            if self.compilation_config.cudagraph_mode\
                .requires_piecewise_compilation():
                assert self.compilation_config.level == \
                    CompilationLevel.PIECEWISE, \
                    "Compilation level should be CompilationLevel.PIECEWISE "\
                    "when cudagraph_mode piecewise cudagraphs is used, "\
                    f"cudagraph_mode={self.compilation_config.cudagraph_mode}"

        if self.parallel_config.enable_dbo:
            a2a_backend = envs.VLLM_ALL2ALL_BACKEND
            assert a2a_backend == "deepep_low_latency", \
            "Microbatching currently only supports the deepep_low_latency "\
            f"all2all backend. {a2a_backend} is not supported. To fix set "\
            "the VLLM_ALL2ALL_BACKEND environment variable to "\
            "deepep_low_latency and install the DeepEP kerenls."

        if not self.instance_id:
            self.instance_id = random_uuid()[:5]

        # Do this after all the updates to compilation_config.level
        if envs.VLLM_USE_V1 and \
            self.compilation_config.level == CompilationLevel.PIECEWISE:
            self.compilation_config.set_splitting_ops_for_v1()

        if (envs.VLLM_USE_V1
                and not self.scheduler_config.disable_hybrid_kv_cache_manager):
            # logger should only print warning message for hybrid models. As we
            # can't know whether the model is hybrid or not now, so we don't log
            # warning message here and will log it later.
            if not current_platform.support_hybrid_kv_cache():
                # Hybrid KV cache manager is not supported on non-GPU platforms.
                self.scheduler_config.disable_hybrid_kv_cache_manager = True
            if self.kv_transfer_config is not None:
                # Hybrid KV cache manager is not compatible with KV transfer.
                self.scheduler_config.disable_hybrid_kv_cache_manager = True
            if self.kv_events_config is not None:
                # Hybrid KV cache manager is not compatible with KV events.
                self.scheduler_config.disable_hybrid_kv_cache_manager = True
            if self.model_config is not None and \
                self.model_config.attention_chunk_size is not None:
                if self.speculative_config is not None and \
                    self.speculative_config.use_eagle():
                    # Hybrid KV cache manager is not yet supported with chunked
                    # local attention + eagle.
                    self.scheduler_config.disable_hybrid_kv_cache_manager = True
                elif \
                    not envs.VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE:
                    logger.warning(
                        "There is a latency regression when using chunked local"
                        " attention with the hybrid KV cache manager. Disabling"
                        " it, by default. To enable it, set the environment "
                        "VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE=1."
                    )
                    # Hybrid KV cache manager is not yet supported with chunked
                    # local attention.
                    self.scheduler_config.disable_hybrid_kv_cache_manager = True

    def update_sizes_for_sequence_parallelism(self,
                                              possible_sizes: list) -> list:
        # remove the sizes that not multiple of tp_size when
        # enable sequence parallelism
        removed_sizes = [
            size for size in possible_sizes
            if size % self.parallel_config.tensor_parallel_size != 0
        ]
        if removed_sizes:
            logger.warning(
                "Batch sizes %s are removed because they are not "
                "multiple of tp_size %d when "
                "sequence parallelism is enabled", removed_sizes,
                self.parallel_config.tensor_parallel_size)

        return [
            size for size in possible_sizes
            if size % self.parallel_config.tensor_parallel_size == 0
        ]

    def _set_cudagraph_sizes(self):
        """
        vLLM defines the default candidate list of batch sizes for CUDA graph
        capture as:

        ```python
        max_graph_size = min(max_num_seqs * 2, 512)
        # 1, 2, 4, then multiples of 8 up to max_graph_size
        cuda_graph_sizes = [1, 2, 4, 8, 16, 24, 32, 40, ..., max_graph_size]

        In the end, `vllm_config.compilation_config.cudagraph_capture_sizes`
        will be the final sizes to capture cudagraph (in descending order).

        These sizes are used to capture and reuse CUDA graphs for
        performance-critical paths (e.g., decoding). Capturing enables
        significantly faster kernel dispatch by avoiding Python overhead. The
        list is then filtered based on `max_num_batched_tokens` (e.g., 8192 on
        most GPUs), which controls the total allowed number of tokens in a
        batch. Since each sequence may have a variable number of tokens, the
        maximum usable batch size will depend on actual sequence lengths.

        Example:
            With `max_num_batched_tokens = 8192`, and typical sequences
            averaging ~32 tokens, most practical batch sizes fall below 256.
            However, the system will still allow capture sizes up to 512 if
            shape and memory permit.

        Note:
            If users explicitly specify cudagraph capture sizes in the
            compilation config, those will override this default logic.
            At runtime:

            - If batch size <= one of the `cudagraph_capture_sizes`, the closest
            padded CUDA graph will be used.
            - If batch size > largest `cudagraph_capture_sizes`, cudagraph will
            not be used.
        """

        # calculate the default `batch_size_capture_list`
        if not envs.VLLM_USE_V1:
            batch_size_capture_list = []
            if self.scheduler_config is not None and \
                self.model_config is not None and \
                    not self.model_config.enforce_eager:

                possible_sizes = [1, 2, 4] + [8 * i for i in range(1, 1025)]
                if self.parallel_config.tensor_parallel_size > 1 and \
                    self.compilation_config.pass_config.enable_sequence_parallelism:
                    possible_sizes = self.update_sizes_for_sequence_parallelism(
                        possible_sizes)

                # find the minimum size that is larger than max_num_seqs,
                # which then becomes the max_batchsize_to_capture
                larger_sizes = [
                    x for x in possible_sizes
                    if x >= self.scheduler_config.max_num_seqs
                ]
                if larger_sizes:
                    max_batchsize_to_capture = larger_sizes[0]
                else:
                    max_batchsize_to_capture = possible_sizes[-1]

                # filter out the sizes that are
                # larger than max_batchsize_to_capture
                batch_size_capture_list = [
                    size for size in possible_sizes
                    if size <= max_batchsize_to_capture
                ]
        else:
            batch_size_capture_list = []
            if self.model_config is not None and \
                not self.model_config.enforce_eager:
                cuda_graph_sizes = self.scheduler_config.cuda_graph_sizes
                if len(cuda_graph_sizes) == 1:
                    batch_size_capture_list = [1, 2, 4] + [
                        i for i in range(8, cuda_graph_sizes[0] + 1, 8)
                    ]
                elif len(cuda_graph_sizes) > 1:
                    batch_size_capture_list = sorted(cuda_graph_sizes)
                else:
                    raise TypeError(f"Invalid value for {cuda_graph_sizes=}.")
                if self.parallel_config.tensor_parallel_size > 1 and \
                    self.compilation_config.pass_config.enable_sequence_parallelism:
                    batch_size_capture_list = \
                        self.update_sizes_for_sequence_parallelism(batch_size_capture_list)
                max_num_tokens = self.scheduler_config.max_num_batched_tokens
                batch_size_capture_list = [
                    size for size in batch_size_capture_list
                    if size <= max_num_tokens
                ]

        self.compilation_config.init_with_cudagraph_sizes(
            batch_size_capture_list)

    def recalculate_max_model_len(self, max_model_len: int):
        # Can only be called in try_verify_and_update_config
        model_config = self.model_config
        max_model_len = model_config.get_and_verify_max_len(max_model_len)
        self.model_config.max_model_len = max_model_len
        self.scheduler_config.max_model_len = max_model_len

    def try_verify_and_update_config(self):
        if self.model_config is None:
            return

        # Avoid running try_verify_and_update_config multiple times
        if getattr(self.model_config, "config_updated", False):
            return
        self.model_config.config_updated = True

        architecture = self.model_config.architecture
        if architecture is None:
            return

        from vllm.model_executor.models.config import (
            MODELS_CONFIG_MAP, HybridAttentionMambaModelConfig)
        cls = MODELS_CONFIG_MAP.get(architecture, None)
        if cls is not None:
            cls.verify_and_update_config(self)

        if self.model_config.is_hybrid:
            HybridAttentionMambaModelConfig.verify_and_update_config(self)

        if self.model_config.convert_type == "classify":
            # Maybe convert ForCausalLM into ForSequenceClassification model.
            from vllm.model_executor.models.adapters import (
                SequenceClassificationConfig)
            SequenceClassificationConfig.verify_and_update_config(self)

        if hasattr(self.model_config, "model_weights") and is_runai_obj_uri(
                self.model_config.model_weights):
            if self.load_config.load_format == "auto":
                logger.info("Detected Run:ai model config. "
                            "Overriding `load_format` to 'runai_streamer'")
                self.load_config.load_format = "runai_streamer"
            elif self.load_config.load_format != "runai_streamer":
                raise ValueError(f"To load a model from S3, 'load_format' "
                                 f"must be 'runai_streamer', "
                                 f"but got '{self.load_config.load_format}'. "
                                 f"Model: {self.model_config.model}")

    def __str__(self):
        return (
            f"model={self.model_config.model!r}, "
            f"speculative_config={self.speculative_config!r}, "
            f"tokenizer={self.model_config.tokenizer!r}, "
            f"skip_tokenizer_init={self.model_config.skip_tokenizer_init}, "
            f"tokenizer_mode={self.model_config.tokenizer_mode}, "
            f"revision={self.model_config.revision}, "
            f"tokenizer_revision={self.model_config.tokenizer_revision}, "
            f"trust_remote_code={self.model_config.trust_remote_code}, "
            f"dtype={self.model_config.dtype}, "
            f"max_seq_len={self.model_config.max_model_len}, "
            f"download_dir={self.load_config.download_dir!r}, "
            f"load_format={self.load_config.load_format}, "
            f"tensor_parallel_size={self.parallel_config.tensor_parallel_size}, "  # noqa
            f"pipeline_parallel_size={self.parallel_config.pipeline_parallel_size}, "  # noqa
            f"data_parallel_size={self.parallel_config.data_parallel_size}, "  # noqa
            f"disable_custom_all_reduce={self.parallel_config.disable_custom_all_reduce}, "  # noqa
            f"quantization={self.model_config.quantization}, "
            f"enforce_eager={self.model_config.enforce_eager}, "
            f"kv_cache_dtype={self.cache_config.cache_dtype}, "
            f"device_config={self.device_config.device}, "
            f"structured_outputs_config={self.structured_outputs_config!r}, "
            f"observability_config={self.observability_config!r}, "
            f"seed={self.model_config.seed}, "
            f"served_model_name={self.model_config.served_model_name}, "
            f"enable_prefix_caching={self.cache_config.enable_prefix_caching}, "
            f"chunked_prefill_enabled={self.scheduler_config.chunked_prefill_enabled}, "  # noqa
            f"pooler_config={self.model_config.pooler_config!r}, "
            f"compilation_config={self.compilation_config!r}")

additional_config class-attribute instance-attribute

additional_config: Union[dict, SupportsHash] = field(
    default_factory=dict
)

Additional config for specified platform. Different platforms may support different configs. Make sure the configs are valid for the platform you are using. Contents must be hashable.

cache_config class-attribute instance-attribute

cache_config: CacheConfig = field(
    default_factory=CacheConfig
)

Cache configuration.

compilation_config class-attribute instance-attribute

compilation_config: CompilationConfig = field(
    default_factory=CompilationConfig
)

torch.compile and cudagraph capture configuration for the model.

As a shorthand, -O<n> can be used to directly specify the compilation level n: -O3 is equivalent to -O.level=3 (same as -O='{"level":3}'). Currently, -O and -O= are supported as well but this will likely be removed in favor of clearer -O syntax in the future.

NOTE: level 0 is the default level without any optimization. level 1 and 2 are for internal testing only. level 3 is the recommended level for production, also default in V1.

You can specify the full compilation config like so: {"level": 3, "cudagraph_capture_sizes": [1, 2, 4, 8]}

device_config class-attribute instance-attribute

device_config: DeviceConfig = field(
    default_factory=DeviceConfig
)

Device configuration.

instance_id class-attribute instance-attribute

instance_id: str = ''

The ID of the vLLM instance.

kv_events_config class-attribute instance-attribute

kv_events_config: Optional[KVEventsConfig] = None

The configurations for event publishing.

kv_transfer_config class-attribute instance-attribute

kv_transfer_config: Optional[KVTransferConfig] = None

The configurations for distributed KV cache transfer.

load_config class-attribute instance-attribute

load_config: LoadConfig = field(default_factory=LoadConfig)

Load configuration.

lora_config class-attribute instance-attribute

lora_config: Optional[LoRAConfig] = None

LoRA configuration.

model_config class-attribute instance-attribute

model_config: ModelConfig = None

Model configuration.

observability_config class-attribute instance-attribute

observability_config: Optional[ObservabilityConfig] = None

Observability configuration.

parallel_config class-attribute instance-attribute

parallel_config: ParallelConfig = field(
    default_factory=ParallelConfig
)

Parallel configuration.

quant_config class-attribute instance-attribute

quant_config: Optional[QuantizationConfig] = None

Quantization configuration.

scheduler_config class-attribute instance-attribute

scheduler_config: SchedulerConfig = field(
    default_factory=SchedulerConfig
)

Scheduler configuration.

speculative_config class-attribute instance-attribute

speculative_config: Optional[SpeculativeConfig] = None

Speculative decoding configuration.

structured_outputs_config class-attribute instance-attribute

structured_outputs_config: StructuredOutputsConfig = field(
    default_factory=StructuredOutputsConfig
)

Structured outputs configuration.

__post_init__

__post_init__()

Verify configs are valid & consistent with each other.

Source code in vllm/config/__init__.py
def __post_init__(self):
    """Verify configs are valid & consistent with each other.
    """

    self.try_verify_and_update_config()

    if self.model_config is not None:
        self.model_config.verify_with_parallel_config(self.parallel_config)
        self.model_config.verify_dual_chunk_attention_config(
            self.load_config)

    self.cache_config.verify_with_parallel_config(self.parallel_config)

    if self.lora_config is not None:
        self.lora_config.verify_with_cache_config(self.cache_config)
        self.lora_config.verify_with_model_config(self.model_config)

    if self.quant_config is None and self.model_config is not None:
        self.quant_config = VllmConfig._get_quantization_config(
            self.model_config, self.load_config)

    from vllm.platforms import current_platform
    if self.model_config is not None and \
        self.scheduler_config.chunked_prefill_enabled and \
        self.model_config.dtype == torch.float32 and \
        current_platform.get_device_capability() == (7, 5):
        logger.warning_once(
            "Turing devices tensor cores do not support float32 matmul. "
            "To workaround this limitation, vLLM will set 'ieee' input "
            "precision for chunked prefill triton kernels.")

    # If the user does not explicitly set a compilation level, then
    # we use the default level. The default level depends on other
    # settings (see the below code).
    if self.compilation_config.level is None:
        if envs.VLLM_USE_V1:
            if (self.model_config is not None
                    and not self.model_config.enforce_eager):
                self.compilation_config.level = CompilationLevel.PIECEWISE
            else:
                self.compilation_config.level = \
                        CompilationLevel.NO_COMPILATION

        else:
            # NB: Passing both --enforce-eager and a compilation level
            # in V0 means the compilation level wins out.
            self.compilation_config.level = CompilationLevel.NO_COMPILATION

    # async tp is built on top of sequence parallelism
    # and requires it to be enabled.
    if self.compilation_config.pass_config.enable_async_tp:
        self.compilation_config.pass_config.enable_sequence_parallelism = \
            True
    if self.compilation_config.pass_config.enable_sequence_parallelism:
        self.compilation_config.custom_ops.append("+rms_norm")

    if current_platform.support_static_graph_mode():
        # if cudagraph_mode is not explicitly set by users, set default
        # value
        if self.compilation_config.cudagraph_mode is None:
            if envs.VLLM_USE_V1 and self.compilation_config.level \
                == CompilationLevel.PIECEWISE:
                self.compilation_config.cudagraph_mode = \
                    CUDAGraphMode.PIECEWISE
            else:
                self.compilation_config.cudagraph_mode = CUDAGraphMode.NONE

        # disable cudagraph when enforce eager execution
        if self.model_config is not None and \
                self.model_config.enforce_eager:
            logger.info("Cudagraph is disabled under eager mode")
            self.compilation_config.cudagraph_mode = CUDAGraphMode.NONE
        elif envs.VLLM_USE_V1:
            self.compilation_config.cudagraph_num_of_warmups = 1

        self._set_cudagraph_sizes()
    else:
        self.compilation_config.cudagraph_mode = CUDAGraphMode.NONE

    if self.cache_config.cpu_offload_gb > 0 and \
        self.compilation_config.level != CompilationLevel.NO_COMPILATION \
            and not envs.VLLM_USE_V1:
        logger.warning(
            "CPU offload is not supported with `torch.compile` in v0 yet."
            " Disabling `torch.compile`.")
        self.compilation_config.level = CompilationLevel.NO_COMPILATION

    if self.cache_config.kv_sharing_fast_prefill:
        if not envs.VLLM_USE_V1:
            raise NotImplementedError(
                "Fast prefill optimization for KV sharing is not supported "
                "in V0 currently.")

        if self.speculative_config is not None and \
            self.speculative_config.use_eagle():
            raise NotImplementedError(
                "Fast prefill optimization for KV sharing is not "
                "compatible with EAGLE as EAGLE requires correct logits "
                "for all tokens while fast prefill gives incorrect logits "
                "for prompt tokens.")

        logger.warning_once(
            "--kv-sharing-fast-prefill requires changes on model side for "
            "correctness and to realize prefill savings. ")

    if ((not envs.VLLM_USE_V1) and self.lora_config is not None
            and self.compilation_config.level
            != CompilationLevel.NO_COMPILATION):
        logger.warning(
            "LoRA for V0 is not supported with `torch.compile` yet. "
            "Disabling `torch.compile`.")
        self.compilation_config.level = CompilationLevel.NO_COMPILATION

    disable_chunked_prefill_reasons: list[str] = []

    if self.model_config:
        if self.model_config.pooler_config:
            pooling_type = self.model_config.pooler_config.pooling_type
            if pooling_type is None or pooling_type.lower() != "last":
                disable_chunked_prefill_reasons.append(
                    "Only \"last\" pooling supports chunked "
                    "prefill and prefix caching; disabling both.")
            if not getattr(self.model_config.hf_config, "is_causal", True):
                disable_chunked_prefill_reasons.append(
                    "Only models using causal attention supports chunked "
                    "prefill and prefix caching; disabling both.")
        elif self.model_config.is_encoder_decoder:
            self.scheduler_config.max_num_encoder_input_tokens = \
                MULTIMODAL_REGISTRY.get_encdec_max_encoder_len(self.model_config)
            logger.debug(
                "Encoder-decoder model detected: setting "
                "`max_num_encoder_input_tokens` to encoder length (%s)",
                self.scheduler_config.max_num_encoder_input_tokens)
            self.scheduler_config.disable_chunked_mm_input = True
            disable_chunked_prefill_reasons.append(
                "Encoder-decoder models do not support chunked prefill nor"
                " prefix caching; disabling both.")
            if (self.model_config.architecture
                    == "WhisperForConditionalGeneration"
                    and os.environ.get("VLLM_WORKER_MULTIPROC_METHOD")
                    != "spawn"):
                logger.warning(
                    "Whisper is known to have issues with "
                    "forked workers. If startup is hanging, "
                    "try setting 'VLLM_WORKER_MULTIPROC_METHOD' "
                    "to 'spawn'.")

    if disable_chunked_prefill_reasons:
        for reason in disable_chunked_prefill_reasons:
            logger.info(reason)
        self.scheduler_config.chunked_prefill_enabled = False
        self.scheduler_config.long_prefill_token_threshold = 0

        if self.cache_config is not None:
            self.cache_config.enable_prefix_caching = False

    if (self.kv_events_config is not None
            and self.kv_events_config.enable_kv_cache_events
            and not self.cache_config.enable_prefix_caching):
        logger.warning(
            "KV cache events are on, but prefix caching is not enabled."
            "Use --enable-prefix-caching to enable.")
    if (self.kv_events_config is not None
            and self.kv_events_config.publisher != "null"
            and not self.kv_events_config.enable_kv_cache_events):
        logger.warning("KV cache events are disabled,"
                       "but the scheduler is configured to publish them."
                       "Modify KVEventsConfig.enable_kv_cache_events"
                       "to True to enable.")
    current_platform.check_and_update_config(self)

    # final check of cudagraph mode after platform-specific update
    if envs.VLLM_USE_V1 and current_platform.is_cuda_alike():
        if self.compilation_config.cudagraph_mode == CUDAGraphMode.FULL \
            and self.model_config is not None and \
            not self.model_config.disable_cascade_attn:
            logger.info("CUDAGraphMode.FULL is not supported with "
                        "cascade attention currently. Disabling cascade"
                        "attention.")
            self.model_config.disable_cascade_attn = True

        if self.compilation_config.cudagraph_mode\
            .requires_piecewise_compilation():
            assert self.compilation_config.level == \
                CompilationLevel.PIECEWISE, \
                "Compilation level should be CompilationLevel.PIECEWISE "\
                "when cudagraph_mode piecewise cudagraphs is used, "\
                f"cudagraph_mode={self.compilation_config.cudagraph_mode}"

    if self.parallel_config.enable_dbo:
        a2a_backend = envs.VLLM_ALL2ALL_BACKEND
        assert a2a_backend == "deepep_low_latency", \
        "Microbatching currently only supports the deepep_low_latency "\
        f"all2all backend. {a2a_backend} is not supported. To fix set "\
        "the VLLM_ALL2ALL_BACKEND environment variable to "\
        "deepep_low_latency and install the DeepEP kerenls."

    if not self.instance_id:
        self.instance_id = random_uuid()[:5]

    # Do this after all the updates to compilation_config.level
    if envs.VLLM_USE_V1 and \
        self.compilation_config.level == CompilationLevel.PIECEWISE:
        self.compilation_config.set_splitting_ops_for_v1()

    if (envs.VLLM_USE_V1
            and not self.scheduler_config.disable_hybrid_kv_cache_manager):
        # logger should only print warning message for hybrid models. As we
        # can't know whether the model is hybrid or not now, so we don't log
        # warning message here and will log it later.
        if not current_platform.support_hybrid_kv_cache():
            # Hybrid KV cache manager is not supported on non-GPU platforms.
            self.scheduler_config.disable_hybrid_kv_cache_manager = True
        if self.kv_transfer_config is not None:
            # Hybrid KV cache manager is not compatible with KV transfer.
            self.scheduler_config.disable_hybrid_kv_cache_manager = True
        if self.kv_events_config is not None:
            # Hybrid KV cache manager is not compatible with KV events.
            self.scheduler_config.disable_hybrid_kv_cache_manager = True
        if self.model_config is not None and \
            self.model_config.attention_chunk_size is not None:
            if self.speculative_config is not None and \
                self.speculative_config.use_eagle():
                # Hybrid KV cache manager is not yet supported with chunked
                # local attention + eagle.
                self.scheduler_config.disable_hybrid_kv_cache_manager = True
            elif \
                not envs.VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE:
                logger.warning(
                    "There is a latency regression when using chunked local"
                    " attention with the hybrid KV cache manager. Disabling"
                    " it, by default. To enable it, set the environment "
                    "VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE=1."
                )
                # Hybrid KV cache manager is not yet supported with chunked
                # local attention.
                self.scheduler_config.disable_hybrid_kv_cache_manager = True

__str__

__str__()
Source code in vllm/config/__init__.py
def __str__(self):
    return (
        f"model={self.model_config.model!r}, "
        f"speculative_config={self.speculative_config!r}, "
        f"tokenizer={self.model_config.tokenizer!r}, "
        f"skip_tokenizer_init={self.model_config.skip_tokenizer_init}, "
        f"tokenizer_mode={self.model_config.tokenizer_mode}, "
        f"revision={self.model_config.revision}, "
        f"tokenizer_revision={self.model_config.tokenizer_revision}, "
        f"trust_remote_code={self.model_config.trust_remote_code}, "
        f"dtype={self.model_config.dtype}, "
        f"max_seq_len={self.model_config.max_model_len}, "
        f"download_dir={self.load_config.download_dir!r}, "
        f"load_format={self.load_config.load_format}, "
        f"tensor_parallel_size={self.parallel_config.tensor_parallel_size}, "  # noqa
        f"pipeline_parallel_size={self.parallel_config.pipeline_parallel_size}, "  # noqa
        f"data_parallel_size={self.parallel_config.data_parallel_size}, "  # noqa
        f"disable_custom_all_reduce={self.parallel_config.disable_custom_all_reduce}, "  # noqa
        f"quantization={self.model_config.quantization}, "
        f"enforce_eager={self.model_config.enforce_eager}, "
        f"kv_cache_dtype={self.cache_config.cache_dtype}, "
        f"device_config={self.device_config.device}, "
        f"structured_outputs_config={self.structured_outputs_config!r}, "
        f"observability_config={self.observability_config!r}, "
        f"seed={self.model_config.seed}, "
        f"served_model_name={self.model_config.served_model_name}, "
        f"enable_prefix_caching={self.cache_config.enable_prefix_caching}, "
        f"chunked_prefill_enabled={self.scheduler_config.chunked_prefill_enabled}, "  # noqa
        f"pooler_config={self.model_config.pooler_config!r}, "
        f"compilation_config={self.compilation_config!r}")

_get_quantization_config staticmethod

_get_quantization_config(
    model_config: ModelConfig, load_config: LoadConfig
) -> Optional[QuantizationConfig]

Get the quantization config.

Source code in vllm/config/__init__.py
@staticmethod
def _get_quantization_config(
        model_config: ModelConfig,
        load_config: LoadConfig) -> Optional[QuantizationConfig]:
    """Get the quantization config."""
    from vllm.platforms import current_platform
    if model_config.quantization is not None:
        from vllm.model_executor.model_loader.weight_utils import (
            get_quant_config)
        quant_config = get_quant_config(model_config, load_config)
        capability_tuple = current_platform.get_device_capability()

        if capability_tuple is not None:
            capability = capability_tuple.to_int()
            if capability < quant_config.get_min_capability():
                raise ValueError(
                    f"The quantization method {model_config.quantization} "
                    "is not supported for the current GPU. Minimum "
                    f"capability: {quant_config.get_min_capability()}. "
                    f"Current capability: {capability}.")
        supported_dtypes = quant_config.get_supported_act_dtypes()
        if model_config.dtype not in supported_dtypes:
            raise ValueError(
                f"{model_config.dtype} is not supported for quantization "
                f"method {model_config.quantization}. Supported dtypes: "
                f"{supported_dtypes}")
        return quant_config
    return None

_set_cudagraph_sizes

_set_cudagraph_sizes()

vLLM defines the default candidate list of batch sizes for CUDA graph capture as:

```python max_graph_size = min(max_num_seqs * 2, 512)

1, 2, 4, then multiples of 8 up to max_graph_size

cuda_graph_sizes = [1, 2, 4, 8, 16, 24, 32, 40, ..., max_graph_size]

In the end, vllm_config.compilation_config.cudagraph_capture_sizes will be the final sizes to capture cudagraph (in descending order).

These sizes are used to capture and reuse CUDA graphs for performance-critical paths (e.g., decoding). Capturing enables significantly faster kernel dispatch by avoiding Python overhead. The list is then filtered based on max_num_batched_tokens (e.g., 8192 on most GPUs), which controls the total allowed number of tokens in a batch. Since each sequence may have a variable number of tokens, the maximum usable batch size will depend on actual sequence lengths.

Example: With max_num_batched_tokens = 8192, and typical sequences averaging ~32 tokens, most practical batch sizes fall below 256. However, the system will still allow capture sizes up to 512 if shape and memory permit.

Note: If users explicitly specify cudagraph capture sizes in the compilation config, those will override this default logic. At runtime:

- If batch size <= one of the `cudagraph_capture_sizes`, the closest
padded CUDA graph will be used.
- If batch size > largest `cudagraph_capture_sizes`, cudagraph will
not be used.
Source code in vllm/config/__init__.py
def _set_cudagraph_sizes(self):
    """
    vLLM defines the default candidate list of batch sizes for CUDA graph
    capture as:

    ```python
    max_graph_size = min(max_num_seqs * 2, 512)
    # 1, 2, 4, then multiples of 8 up to max_graph_size
    cuda_graph_sizes = [1, 2, 4, 8, 16, 24, 32, 40, ..., max_graph_size]

    In the end, `vllm_config.compilation_config.cudagraph_capture_sizes`
    will be the final sizes to capture cudagraph (in descending order).

    These sizes are used to capture and reuse CUDA graphs for
    performance-critical paths (e.g., decoding). Capturing enables
    significantly faster kernel dispatch by avoiding Python overhead. The
    list is then filtered based on `max_num_batched_tokens` (e.g., 8192 on
    most GPUs), which controls the total allowed number of tokens in a
    batch. Since each sequence may have a variable number of tokens, the
    maximum usable batch size will depend on actual sequence lengths.

    Example:
        With `max_num_batched_tokens = 8192`, and typical sequences
        averaging ~32 tokens, most practical batch sizes fall below 256.
        However, the system will still allow capture sizes up to 512 if
        shape and memory permit.

    Note:
        If users explicitly specify cudagraph capture sizes in the
        compilation config, those will override this default logic.
        At runtime:

        - If batch size <= one of the `cudagraph_capture_sizes`, the closest
        padded CUDA graph will be used.
        - If batch size > largest `cudagraph_capture_sizes`, cudagraph will
        not be used.
    """

    # calculate the default `batch_size_capture_list`
    if not envs.VLLM_USE_V1:
        batch_size_capture_list = []
        if self.scheduler_config is not None and \
            self.model_config is not None and \
                not self.model_config.enforce_eager:

            possible_sizes = [1, 2, 4] + [8 * i for i in range(1, 1025)]
            if self.parallel_config.tensor_parallel_size > 1 and \
                self.compilation_config.pass_config.enable_sequence_parallelism:
                possible_sizes = self.update_sizes_for_sequence_parallelism(
                    possible_sizes)

            # find the minimum size that is larger than max_num_seqs,
            # which then becomes the max_batchsize_to_capture
            larger_sizes = [
                x for x in possible_sizes
                if x >= self.scheduler_config.max_num_seqs
            ]
            if larger_sizes:
                max_batchsize_to_capture = larger_sizes[0]
            else:
                max_batchsize_to_capture = possible_sizes[-1]

            # filter out the sizes that are
            # larger than max_batchsize_to_capture
            batch_size_capture_list = [
                size for size in possible_sizes
                if size <= max_batchsize_to_capture
            ]
    else:
        batch_size_capture_list = []
        if self.model_config is not None and \
            not self.model_config.enforce_eager:
            cuda_graph_sizes = self.scheduler_config.cuda_graph_sizes
            if len(cuda_graph_sizes) == 1:
                batch_size_capture_list = [1, 2, 4] + [
                    i for i in range(8, cuda_graph_sizes[0] + 1, 8)
                ]
            elif len(cuda_graph_sizes) > 1:
                batch_size_capture_list = sorted(cuda_graph_sizes)
            else:
                raise TypeError(f"Invalid value for {cuda_graph_sizes=}.")
            if self.parallel_config.tensor_parallel_size > 1 and \
                self.compilation_config.pass_config.enable_sequence_parallelism:
                batch_size_capture_list = \
                    self.update_sizes_for_sequence_parallelism(batch_size_capture_list)
            max_num_tokens = self.scheduler_config.max_num_batched_tokens
            batch_size_capture_list = [
                size for size in batch_size_capture_list
                if size <= max_num_tokens
            ]

    self.compilation_config.init_with_cudagraph_sizes(
        batch_size_capture_list)

compute_hash

compute_hash() -> str

WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.

Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.

Source code in vllm/config/__init__.py
def compute_hash(self) -> str:
    """
    WARNING: Whenever a new field is added to this config,
    ensure that it is included in the factors list if
    it affects the computation graph.

    Provide a hash that uniquely identifies all the configs
    that affect the structure of the computation
    graph from input ids/embeddings to the final hidden states,
    excluding anything before input ids/embeddings and after
    the final hidden states.
    """
    factors: list[Any] = []

    # summarize vllm config
    vllm_factors: list[Any] = []
    from vllm import __version__
    vllm_factors.append(__version__)
    vllm_factors.append(envs.VLLM_USE_V1)
    if self.model_config:
        vllm_factors.append(self.model_config.compute_hash())
    else:
        vllm_factors.append("None")
    if self.cache_config:
        vllm_factors.append(self.cache_config.compute_hash())
    else:
        vllm_factors.append("None")
    if self.parallel_config:
        vllm_factors.append(self.parallel_config.compute_hash())
    else:
        vllm_factors.append("None")
    if self.scheduler_config:
        vllm_factors.append(self.scheduler_config.compute_hash())
    else:
        vllm_factors.append("None")
    if self.device_config:
        vllm_factors.append(self.device_config.compute_hash())
    else:
        vllm_factors.append("None")
    if self.load_config:
        vllm_factors.append(self.load_config.compute_hash())
    else:
        vllm_factors.append("None")
    if self.lora_config:
        vllm_factors.append(self.lora_config.compute_hash())
        # LoRA creates static buffers based on max_num_batched_tokens.
        # The tensor sizes and strides get captured in the torch.compile
        # graph explicitly.
        vllm_factors.append(
            str(self.scheduler_config.max_num_batched_tokens))
    else:
        vllm_factors.append("None")
    if self.speculative_config:
        vllm_factors.append(self.speculative_config.compute_hash())
    else:
        vllm_factors.append("None")
    if self.structured_outputs_config:
        vllm_factors.append(self.structured_outputs_config.compute_hash())
    else:
        vllm_factors.append("None")
    if self.observability_config:
        vllm_factors.append(self.observability_config.compute_hash())
    else:
        vllm_factors.append("None")
    if self.quant_config:
        pass  # should be captured by model_config.quantization
    if self.compilation_config:
        vllm_factors.append(self.compilation_config.compute_hash())
    else:
        vllm_factors.append("None")
    if self.kv_transfer_config:
        vllm_factors.append(self.kv_transfer_config.compute_hash())
    else:
        vllm_factors.append("None")
    if self.additional_config:
        if isinstance(additional_config := self.additional_config, dict):
            additional_config_hash = hashlib.md5(
                json.dumps(additional_config, sort_keys=True).encode(),
                usedforsecurity=False,
            ).hexdigest()
        else:
            additional_config_hash = additional_config.compute_hash()
        vllm_factors.append(additional_config_hash)
    else:
        vllm_factors.append("None")
    factors.append(vllm_factors)

    hash_str = hashlib.md5(str(factors).encode(),
                           usedforsecurity=False).hexdigest()[:10]
    return hash_str

get_quantization_config staticmethod

get_quantization_config(
    model_config: ModelConfig, load_config: LoadConfig
) -> Optional[QuantizationConfig]
Source code in vllm/config/__init__.py
@staticmethod
def get_quantization_config(
        model_config: ModelConfig,
        load_config: LoadConfig) -> Optional[QuantizationConfig]:
    import copy

    # For some reason, the _ version of this modifies the model_config
    # object, so using deepcopy to avoid this problem.
    return VllmConfig._get_quantization_config(copy.deepcopy(model_config),
                                               load_config)

pad_for_cudagraph

pad_for_cudagraph(batch_size: int) -> int
Source code in vllm/config/__init__.py
def pad_for_cudagraph(self, batch_size: int) -> int:
    # if batch_size > self.compilation_config.max_capture_size,
    # it should raise an IndexError.
    # the caller should make sure the batch_size is within the range,
    # i.e., batch_size <= self.compilation_config.max_capture_size
    return self.compilation_config.bs_to_padded_graph_size[batch_size]

recalculate_max_model_len

recalculate_max_model_len(max_model_len: int)
Source code in vllm/config/__init__.py
def recalculate_max_model_len(self, max_model_len: int):
    # Can only be called in try_verify_and_update_config
    model_config = self.model_config
    max_model_len = model_config.get_and_verify_max_len(max_model_len)
    self.model_config.max_model_len = max_model_len
    self.scheduler_config.max_model_len = max_model_len

try_verify_and_update_config

try_verify_and_update_config()
Source code in vllm/config/__init__.py
def try_verify_and_update_config(self):
    if self.model_config is None:
        return

    # Avoid running try_verify_and_update_config multiple times
    if getattr(self.model_config, "config_updated", False):
        return
    self.model_config.config_updated = True

    architecture = self.model_config.architecture
    if architecture is None:
        return

    from vllm.model_executor.models.config import (
        MODELS_CONFIG_MAP, HybridAttentionMambaModelConfig)
    cls = MODELS_CONFIG_MAP.get(architecture, None)
    if cls is not None:
        cls.verify_and_update_config(self)

    if self.model_config.is_hybrid:
        HybridAttentionMambaModelConfig.verify_and_update_config(self)

    if self.model_config.convert_type == "classify":
        # Maybe convert ForCausalLM into ForSequenceClassification model.
        from vllm.model_executor.models.adapters import (
            SequenceClassificationConfig)
        SequenceClassificationConfig.verify_and_update_config(self)

    if hasattr(self.model_config, "model_weights") and is_runai_obj_uri(
            self.model_config.model_weights):
        if self.load_config.load_format == "auto":
            logger.info("Detected Run:ai model config. "
                        "Overriding `load_format` to 'runai_streamer'")
            self.load_config.load_format = "runai_streamer"
        elif self.load_config.load_format != "runai_streamer":
            raise ValueError(f"To load a model from S3, 'load_format' "
                             f"must be 'runai_streamer', "
                             f"but got '{self.load_config.load_format}'. "
                             f"Model: {self.model_config.model}")

update_sizes_for_sequence_parallelism

update_sizes_for_sequence_parallelism(
    possible_sizes: list,
) -> list
Source code in vllm/config/__init__.py
def update_sizes_for_sequence_parallelism(self,
                                          possible_sizes: list) -> list:
    # remove the sizes that not multiple of tp_size when
    # enable sequence parallelism
    removed_sizes = [
        size for size in possible_sizes
        if size % self.parallel_config.tensor_parallel_size != 0
    ]
    if removed_sizes:
        logger.warning(
            "Batch sizes %s are removed because they are not "
            "multiple of tp_size %d when "
            "sequence parallelism is enabled", removed_sizes,
            self.parallel_config.tensor_parallel_size)

    return [
        size for size in possible_sizes
        if size % self.parallel_config.tensor_parallel_size == 0
    ]

with_hf_config

with_hf_config(
    hf_config: PretrainedConfig,
    architectures: Optional[list[str]] = None,
) -> VllmConfig
Source code in vllm/config/__init__.py
def with_hf_config(
    self,
    hf_config: PretrainedConfig,
    architectures: Optional[list[str]] = None,
) -> "VllmConfig":
    if architectures is not None:
        hf_config = copy.deepcopy(hf_config)
        hf_config.architectures = architectures

    model_config = copy.deepcopy(self.model_config)
    model_config.hf_config = hf_config

    return replace(self, model_config=model_config)

get_cached_compilation_config cached

get_cached_compilation_config()

Cache config to avoid repeated calls to get_current_vllm_config()

Source code in vllm/config/__init__.py
@lru_cache(maxsize=1)
def get_cached_compilation_config():
    """Cache config to avoid repeated calls to get_current_vllm_config()"""
    return get_current_vllm_config().compilation_config

get_current_model_prefix

get_current_model_prefix() -> str

Get the prefix of the model that's currently being initialized.

Source code in vllm/config/__init__.py
def get_current_model_prefix() -> str:
    """
    Get the prefix of the model that's currently being initialized.
    """
    assert _current_prefix is not None, \
        "Current model prefix is not set. "
    return _current_prefix

get_current_vllm_config

get_current_vllm_config() -> VllmConfig
Source code in vllm/config/__init__.py
def get_current_vllm_config() -> VllmConfig:
    if _current_vllm_config is None:
        # in ci, usually when we test custom ops/modules directly,
        # we don't set the vllm config. In that case, we set a default
        # config.
        logger.warning("Current vLLM config is not set.")
        from vllm.config import VllmConfig
        return VllmConfig()
    return _current_vllm_config

get_layers_from_vllm_config

get_layers_from_vllm_config(
    vllm_config: VllmConfig,
    layer_type: type[T],
    layer_names: Optional[list[str]] = None,
) -> dict[str, T]

Get layers from the vLLM config.

Parameters:

Name Type Description Default
vllm_config VllmConfig

The vLLM config.

required
layer_type type[T]

The type of the layer to get.

required
layer_names Optional[list[str]]

The names of the layers to get. If None, return all layers.

None
Source code in vllm/config/__init__.py
def get_layers_from_vllm_config(
        vllm_config: VllmConfig,
        layer_type: type[T],
        layer_names: Optional[list[str]] = None) -> dict[str, T]:
    """
    Get layers from the vLLM config.

    Args:
        vllm_config: The vLLM config.
        layer_type: The type of the layer to get.
        layer_names: The names of the layers to get. If None, return all layers.
    """

    if layer_names is None:
        layer_names = list(
            vllm_config.compilation_config.static_forward_context.keys())

    forward_context = vllm_config.compilation_config.static_forward_context

    return {
        layer_name: forward_context[layer_name]
        for layer_name in layer_names
        if isinstance(forward_context[layer_name], layer_type)
    }

set_current_vllm_config

set_current_vllm_config(
    vllm_config: VllmConfig,
    check_compile=False,
    prefix: Optional[str] = None,
)

Temporarily set the current vLLM config. Used during model initialization. We save the current vLLM config in a global variable, so that all modules can access it, e.g. custom ops can access the vLLM config to determine how to dispatch.

Source code in vllm/config/__init__.py
@contextmanager
def set_current_vllm_config(vllm_config: VllmConfig,
                            check_compile=False,
                            prefix: Optional[str] = None):
    """
    Temporarily set the current vLLM config.
    Used during model initialization.
    We save the current vLLM config in a global variable,
    so that all modules can access it, e.g. custom ops
    can access the vLLM config to determine how to dispatch.
    """
    global _current_vllm_config, _current_prefix
    old_vllm_config = _current_vllm_config
    old_prefix = _current_prefix
    from vllm.compilation.counter import compilation_counter
    num_models_seen = compilation_counter.num_models_seen
    try:
        _current_vllm_config = vllm_config
        _current_prefix = prefix
        yield
    except Exception:
        raise
    else:
        if check_compile:
            vllm_config.compilation_config.custom_op_log_check()

        if check_compile and \
            vllm_config.compilation_config.level == CompilationLevel.PIECEWISE \
            and compilation_counter.num_models_seen == num_models_seen:
            # If the model supports compilation,
            # compilation_counter.num_models_seen should be increased
            # by at least 1.
            # If it is not increased, it means the model does not support
            # compilation (does not have @support_torch_compile decorator).
            logger.warning(
                "`torch.compile` is turned on, but the model %s"
                " does not support it. Please open an issue on GitHub"
                " if you want it to be supported.",
                vllm_config.model_config.model)
    finally:
        _current_vllm_config = old_vllm_config
        _current_prefix = old_prefix
        # Clear the compilation config cache when context changes
        get_cached_compilation_config.cache_clear()

update_config

update_config(
    config: DataclassInstanceT, overrides: dict[str, Any]
) -> DataclassInstanceT
Source code in vllm/config/__init__.py
def update_config(config: DataclassInstanceT,
                  overrides: dict[str, Any]) -> DataclassInstanceT:
    processed_overrides = {}
    for field_name, value in overrides.items():
        assert hasattr(
            config, field_name), f"{type(config)} has no field `{field_name}`"
        current_value = getattr(config, field_name)
        if is_dataclass(current_value) and not is_dataclass(value):
            assert isinstance(value, dict), (
                f"Overrides to {type(config)}.{field_name} must be a dict"
                f"  or {type(current_value)}, but got {type(value)}")
            value = update_config(
                current_value,  # type: ignore[type-var]
                value)
        processed_overrides[field_name] = value
    return replace(config, **processed_overrides)