Skip to content

vllm.v1.spec_decode.eagle

PADDING_SLOT_ID module-attribute

PADDING_SLOT_ID = -1

logger module-attribute

logger = init_logger(__name__)

EagleAttentionMetadata

Bases: Protocol

Source code in vllm/v1/spec_decode/eagle.py
class EagleAttentionMetadata(Protocol):
    # Required attributes
    num_actual_tokens: int
    max_query_len: int
    query_start_loc: torch.Tensor
    max_seq_len: int
    seq_lens: torch.Tensor
    block_table: torch.Tensor
    slot_mapping: torch.Tensor

block_table instance-attribute

block_table: Tensor

max_query_len instance-attribute

max_query_len: int

max_seq_len instance-attribute

max_seq_len: int

num_actual_tokens instance-attribute

num_actual_tokens: int

query_start_loc instance-attribute

query_start_loc: Tensor

seq_lens instance-attribute

seq_lens: Tensor

slot_mapping instance-attribute

slot_mapping: Tensor

EagleProposer

Source code in vllm/v1/spec_decode/eagle.py
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
class EagleProposer:

    def __init__(
        self,
        vllm_config: VllmConfig,
        device: torch.device,
        runner=None,
    ):
        self.vllm_config = vllm_config
        self.speculative_config = vllm_config.speculative_config
        self.draft_model_config = self.speculative_config.draft_model_config
        self.method = self.speculative_config.method

        self.runner = runner
        self.dtype = vllm_config.model_config.dtype
        self.max_model_len = vllm_config.model_config.max_model_len
        self.block_size = vllm_config.cache_config.block_size
        self.num_speculative_tokens = (
            self.speculative_config.num_speculative_tokens)
        self.max_num_tokens = (
            vllm_config.scheduler_config.max_num_batched_tokens)
        self.token_arange_np = np.arange(self.max_num_tokens)
        # We need to get the hidden size from the draft model config because
        # the draft model's hidden size can be different from the target model's
        # hidden size (e.g., Llama 3.3 70B).
        self.hidden_size = self.draft_model_config.get_hidden_size()

        self.is_multimodal_model = vllm_config.model_config \
            .is_multimodal_model

        self.use_cuda_graph = (self.vllm_config.compilation_config.level
                               == CompilationLevel.PIECEWISE and
                               not self.vllm_config.model_config.enforce_eager)
        self.cudagraph_batch_sizes = list(
            reversed(
                self.vllm_config.compilation_config.cudagraph_capture_sizes))

        # persistent buffers for cuda graph
        self.input_ids = torch.zeros(self.max_num_tokens,
                                     dtype=torch.int32,
                                     device=device)
        self.positions = torch.zeros(self.max_num_tokens,
                                     dtype=torch.int64,
                                     device=device)
        self.hidden_states = torch.zeros(
            (self.max_num_tokens, self.hidden_size),
            dtype=self.dtype,
            device=device)

        # We need +1 here because the arange is used to set query_start_loc,
        # which has one more element than batch_size.
        max_batch_size = vllm_config.scheduler_config.max_num_seqs
        max_num_slots_for_arange = max(max_batch_size + 1, self.max_num_tokens)
        self.arange = torch.arange(max_num_slots_for_arange,
                                   device=device,
                                   dtype=torch.int32)

        self.inputs_embeds = torch.zeros(
            (self.max_num_tokens, self.hidden_size),
            dtype=self.dtype,
            device=device)

        self.backup_next_token_ids = CpuGpuBuffer(
            max_batch_size,
            dtype=torch.int32,
            pin_memory=is_pin_memory_available(),
            device=device,
            with_numpy=True)

        # Determine allowed attention backends once during initialization.
        self.allowed_attn_types: tuple[type[EagleAttentionMetadata], ...]
        if current_platform.is_rocm():
            rocm_types = [TritonAttentionMetadata, FlashAttentionMetadata]
            # vllm.v1.attention.backends.rocm_aiter_fa is an optional backend
            if find_spec("vllm.v1.attention.backends.rocm_aiter_fa"):
                from vllm.v1.attention.backends.rocm_aiter_fa import (
                    AiterFlashAttentionMetadata)
                rocm_types.append(AiterFlashAttentionMetadata)
            self.allowed_attn_types = tuple(rocm_types)
        else:
            self.allowed_attn_types = (FlashAttentionMetadata,
                                       TreeAttentionMetadata)

        # Parse the speculative token tree.
        spec_token_tree = self.speculative_config.speculative_token_tree
        self.tree_choices: list[tuple[int,
                                      ...]] = ast.literal_eval(spec_token_tree)
        tree_depth = len(self.tree_choices[-1])
        # Precompute per-level properties of the tree.
        num_drafts_per_level = [0] * tree_depth
        for node in self.tree_choices:
            num_drafts_per_level[len(node) - 1] += 1
        self.cu_drafts_per_level = [num_drafts_per_level[0]]
        self.child_drafts_per_level = [num_drafts_per_level[0]]
        for level in range(1, tree_depth):
            self.cu_drafts_per_level.append(self.cu_drafts_per_level[-1] +
                                            num_drafts_per_level[level])
            self.child_drafts_per_level.append(num_drafts_per_level[level] //
                                               num_drafts_per_level[level - 1])
        # Precompute draft position offsets in flattened tree.
        self.tree_draft_pos_offsets = torch.arange(
            1,
            len(self.tree_choices) + 1,
            device=device,
            dtype=torch.int32,
        ).repeat(max_batch_size, 1)

    def propose(
        self,
        # [num_tokens]
        target_token_ids: torch.Tensor,
        # [num_tokens]
        target_positions: torch.Tensor,
        # [num_tokens, hidden_size]
        target_hidden_states: torch.Tensor,
        # [batch_size]
        next_token_ids: torch.Tensor,
        last_token_indices: Optional[torch.Tensor],
        common_attn_metadata: CommonAttentionMetadata,
        sampling_metadata: SamplingMetadata,
        mm_embeds: Optional[list[torch.Tensor]] = None,
    ) -> torch.Tensor:
        num_tokens = target_token_ids.shape[0]
        batch_size = next_token_ids.shape[0]

        if last_token_indices is None:
            last_token_indices = common_attn_metadata.query_start_loc[1:] - 1

        if self.method == "eagle3":
            assert isinstance(self.model, Eagle3LlamaForCausalLM)
            target_hidden_states = self.model.combine_hidden_states(
                target_hidden_states)
            assert target_hidden_states.shape[-1] == self.hidden_size

        # Shift the input ids by one token.
        # E.g., [a1, b1, b2, c1, c2, c3] -> [b1, b2, c1, c2, c3, c3]
        self.input_ids[:num_tokens - 1] = target_token_ids[1:]
        # Replace the last token with the next token.
        # E.g., [b1, b2, c1, c2, c3, c3] -> [a2, b2, b3, c2, c3, c4]
        self.input_ids[last_token_indices] = next_token_ids

        assert self.runner is not None

        # FIXME: need to consider multiple kv_cache_groups
        ubatch_id = dbo_current_ubatch_id()
        attn_metadata_builder = \
            self.runner.attn_groups[0][0].metadata_builders[ubatch_id]
        attn_metadata = attn_metadata_builder.build_for_drafting(
            common_attn_metadata=common_attn_metadata, draft_index=0)

        # At this moment, we assume all eagle layers belong to the same KV
        # cache group, thus using the same attention metadata.
        per_layer_attn_metadata = {}
        for layer_name in self.attn_layer_names:
            per_layer_attn_metadata[layer_name] = attn_metadata
        if self.use_cuda_graph and \
                num_tokens <= self.cudagraph_batch_sizes[-1]:
            num_input_tokens = self.vllm_config.pad_for_cudagraph(num_tokens)
        else:
            num_input_tokens = num_tokens
        # copy inputs to buffer for cudagraph
        self.positions[:num_tokens] = target_positions
        self.hidden_states[:num_tokens] = target_hidden_states
        if self.is_multimodal_model:
            input_ids = self.input_ids[:num_tokens]
            inputs_embeds = self.model.get_input_embeddings(
                input_ids,
                multimodal_embeddings=mm_embeds or None,
            )
            self.inputs_embeds[:num_tokens] = inputs_embeds
            inputs_embeds = self.inputs_embeds[:num_input_tokens]
            input_ids = None
        else:
            inputs_embeds = None
            input_ids = self.input_ids[:num_input_tokens]

        with set_forward_context(per_layer_attn_metadata,
                                 self.vllm_config,
                                 num_tokens=num_input_tokens):
            ret_hidden_states = self.model(
                input_ids=input_ids,
                positions=self.positions[:num_input_tokens],
                hidden_states=self.hidden_states[:num_input_tokens],
                inputs_embeds=inputs_embeds,
            )
            if self.method in ("deepseek_mtp", "ernie_mtp", "qwen3_next_mtp"):
                last_hidden_states = ret_hidden_states
                hidden_states = last_hidden_states
            else:
                last_hidden_states, hidden_states = ret_hidden_states
        sample_hidden_states = last_hidden_states[last_token_indices]
        logits = self.model.compute_logits(sample_hidden_states)

        # Early exit if there is only one draft token to be generated.
        if self.num_speculative_tokens == 1:
            draft_token_ids = logits.argmax(dim=-1)
            return draft_token_ids.view(-1, 1)

        positions = target_positions[last_token_indices]
        hidden_states = hidden_states[last_token_indices]

        if isinstance(attn_metadata, TreeAttentionMetadata):
            # Draft using tree attention.
            draft_token_ids_list = self.propose_tree(
                batch_size=batch_size,
                logits=logits,
                positions=positions,
                hidden_states=hidden_states,
                common_attn_metadata=common_attn_metadata,
            )
            # [batch_size, num_tree_tokens]
            return torch.cat(draft_token_ids_list, dim=1)

        draft_token_ids = logits.argmax(dim=-1)

        if not isinstance(attn_metadata, self.allowed_attn_types):
            raise ValueError(
                f"Unsupported attention metadata type for speculative "
                "decoding with num_speculative_tokens > 1: "
                f"{type(attn_metadata)}. Supported types are: "
                f"{self.allowed_attn_types}")

        # Generate the remaining draft tokens.
        draft_token_ids_list = [draft_token_ids]

        if self.use_cuda_graph and \
                batch_size <= self.cudagraph_batch_sizes[-1]:
            input_batch_size = self.vllm_config.pad_for_cudagraph(batch_size)
        else:
            input_batch_size = batch_size

        common_attn_metadata.num_actual_tokens = batch_size
        common_attn_metadata.max_query_len = 1
        common_attn_metadata.query_start_loc = self.arange[:batch_size + 1]
        common_attn_metadata.query_start_loc_cpu = torch.from_numpy(
            self.token_arange_np[:batch_size + 1]).clone()
        for token_index in range(self.num_speculative_tokens - 1):
            # Update the inputs.
            # cast to int32 is crucial when eagle model is compiled.
            # tensor.argmax() returns int64 by default.
            input_ids = draft_token_ids_list[-1].int()
            positions += 1

            # NOTE(woosuk): We should handle the case where the draft model
            # generates tokens beyond the max model length. Since it is complex
            # to remove such requests from the batch, we keep them in the batch
            # but adjust the position ids and slot mappings to avoid the
            # out-of-range access during the model execution. The draft tokens
            # generated with this adjustment should be ignored.
            exceeds_max_model_len = positions >= self.max_model_len
            # Mask out the position ids that exceed the max model length.
            # Otherwise, we may get out-of-range error in RoPE.
            clamped_positions = torch.where(exceeds_max_model_len, 0,
                                            positions)

            # Increment the sequence lengths.
            common_attn_metadata.seq_lens += 1
            common_attn_metadata.seq_lens_cpu += 1
            # For the requests that exceed the max model length, we set the
            # sequence length to 1 to minimize their overheads in attention.
            common_attn_metadata.seq_lens.masked_fill_(exceeds_max_model_len,
                                                       1)

            common_attn_metadata.num_computed_tokens_cpu = \
                common_attn_metadata.seq_lens_cpu - 1

            # Compute the slot mapping.
            block_numbers = clamped_positions // self.block_size
            block_ids = common_attn_metadata.block_table_tensor.gather(
                dim=1, index=block_numbers.view(-1, 1))
            block_ids = block_ids.view(-1)
            common_attn_metadata.slot_mapping = (
                block_ids * self.block_size +
                clamped_positions % self.block_size)
            # Mask out the slot mappings that exceed the max model length.
            # Otherwise, the KV cache will be inadvertently updated with the
            # padding tokens.
            common_attn_metadata.slot_mapping.masked_fill_(
                exceeds_max_model_len, PADDING_SLOT_ID)

            # Rebuild attention metadata
            attn_metadata_builder = \
                self.runner.attn_groups[0][0].metadata_builders[ubatch_id]
            attn_metadata = attn_metadata_builder\
                .build_for_drafting(common_attn_metadata=common_attn_metadata,
                                draft_index=token_index + 1)
            for layer_name in self.attn_layer_names:
                per_layer_attn_metadata[layer_name] = attn_metadata

            # copy inputs to buffer for cudagraph
            self.input_ids[:batch_size] = input_ids
            self.positions[:batch_size] = clamped_positions
            self.hidden_states[:batch_size] = hidden_states
            if self.is_multimodal_model:
                inputs_embeds = self.model.get_input_embeddings(input_ids)
                self.inputs_embeds[:batch_size] = inputs_embeds
                inputs_embeds = self.inputs_embeds[:input_batch_size]
                input_ids = None
            else:
                inputs_embeds = None
                input_ids = self.input_ids[:input_batch_size]

            # Run the model.
            with set_forward_context(per_layer_attn_metadata,
                                     self.vllm_config,
                                     num_tokens=input_batch_size):
                ret_hidden_states = self.model(
                    input_ids=input_ids,
                    positions=self.positions[:input_batch_size],
                    hidden_states=self.hidden_states[:input_batch_size],
                    inputs_embeds=inputs_embeds,
                )
                if self.method in ("deepseek_mtp", "ernie_mtp",
                                   "qwen3_next_mtp"):
                    last_hidden_states = ret_hidden_states
                    hidden_states = ret_hidden_states
                else:
                    last_hidden_states, hidden_states = ret_hidden_states
            hidden_states = hidden_states[:batch_size]
            logits = self.model.compute_logits(last_hidden_states[:batch_size])
            draft_token_ids = logits.argmax(dim=-1)
            draft_token_ids_list.append(draft_token_ids)

        # [batch_size, num_speculative_tokens]
        draft_token_ids = torch.stack(draft_token_ids_list, dim=1)
        return draft_token_ids

    def prepare_next_token_ids_cpu(
            self, sampled_token_ids: list[list[int]],
            requests: dict[str,
                           CachedRequestState], gpu_input_batch: InputBatch,
            num_scheduled_tokens: dict[str, int]) -> torch.Tensor:
        """
        This function is used to prepare the inputs for speculative decoding.
        It calculates the next token ids for each request based on the sampled
        token ids from the CPU. If a request has no sampled token ids (e.g.,
        during the initial decoding steps), it falls back to using the request
        state to get the next token id.
        """
        req_ids = gpu_input_batch.req_ids
        next_token_ids: list[int] = []
        for i, token_ids in enumerate(sampled_token_ids):
            if token_ids:
                # Common case.
                next_token_id = token_ids[-1]
            else:
                # Partial prefill (rare case).
                # Get the next token id from the request state.
                req_id = req_ids[i]
                req_state = requests[req_id]
                seq_len = (req_state.num_computed_tokens +
                           num_scheduled_tokens[req_id])
                next_token_id = req_state.get_token_id(seq_len)
            next_token_ids.append(next_token_id)
        next_token_ids = torch.tensor(next_token_ids,
                                      dtype=torch.int32,
                                      device=self.input_ids.device)
        return next_token_ids

    def prepare_next_token_ids_padded(self,
                               common_attn_metadata: CommonAttentionMetadata,
                               sampled_token_ids: torch.Tensor,
                               requests: dict[str, CachedRequestState],
                               gpu_input_batch: InputBatch,
                               discard_request_indices: torch.Tensor,
                               num_discarded_requests: int) -> \
                                tuple[torch.Tensor, torch.Tensor]:
        """
        This function is used to prepare the inputs for speculative decoding.
        It calculates the next token ids and the number of valid sampled tokens
        for each request, considering the "discarded" requests whose next token
        is not sampled and comes from `request.get_token_id()` instead.
        It also accounts for the rejected tokens in `sampled_token_ids`.
        This function must use device functions to operate on the inputs, and
        should not introduce any blocking CPU-GPU synchronization.
        """
        # TODO(Ben): Combine this into a custom fused kernel

        # Precompute get_token_id for when there is no valid next token
        num_reqs = gpu_input_batch.num_reqs
        self.backup_next_token_ids.np[:num_reqs] = np.array([
            requests[gpu_input_batch.req_ids[i]].get_token_id(
                common_attn_metadata.seq_lens_cpu[i].item())
            for i in range(num_reqs)
        ])
        self.backup_next_token_ids.copy_to_gpu(num_reqs)

        # Mask out the sampled tokens indices that should not be sampled.
        discard_sampled_tokens_req_indices = \
            discard_request_indices[:num_discarded_requests]

        valid_sampled_token_ids_gpu = sampled_token_ids.clone()
        valid_sampled_token_ids_gpu.index_fill_(
            0, discard_sampled_tokens_req_indices, -1)

        # Generate a mask for all valid tokens within those requests
        max_gen_len = sampled_token_ids.shape[-1]
        if max_gen_len == 1:
            valid_mask = torch.ones_like(valid_sampled_token_ids_gpu,
                                         dtype=torch.bool)
        else:
            valid_mask = (
                (valid_sampled_token_ids_gpu != -1) &
                (valid_sampled_token_ids_gpu < gpu_input_batch.vocab_size))

        # Count the number of valid tokens in each request
        valid_sampled_tokens_count = valid_mask.sum(dim=1)

        # Get the rightmost valid index per row
        last_valid_indices = valid_sampled_tokens_count - 1
        last_valid_indices_safe = torch.clamp(last_valid_indices, min=0)

        # Get last valid token from each row
        # (assume undefined state where there is no valid token)
        selected_tokens = torch.gather(
            valid_sampled_token_ids_gpu, 1,
            last_valid_indices_safe.unsqueeze(1)).squeeze(1)

        # Use last token if valid, pre-computed backup if not
        batch_size = valid_sampled_token_ids_gpu.shape[0]
        next_token_ids = torch.where(
            last_valid_indices != -1, selected_tokens,
            self.backup_next_token_ids.gpu[:batch_size])

        return next_token_ids, valid_sampled_tokens_count

    def prepare_inputs_padded(self,
                                common_attn_metadata: CommonAttentionMetadata,
                                spec_decode_metadata: SpecDecodeMetadata,
                                valid_sampled_tokens_count: torch.Tensor) -> \
                    tuple[CommonAttentionMetadata, torch.Tensor, torch.Tensor]:
        """
        This function is used to prepare the inputs for speculative decoding
        It updates the common_attn_metadata for speculative decoding,
        but does not consider the rejected tokens. Instead, all tokens
        are included as inputs to the speculator, with the rejected tokens
        used as padding and filtered out later by `token_indices_to_sample`.
        No blocking CPU operations should be introduced in this function.
        """
        num_draft_tokens_gpu = torch.cat([
            spec_decode_metadata.cu_num_draft_tokens[0:1],
            spec_decode_metadata.cu_num_draft_tokens[1:] -
            spec_decode_metadata.cu_num_draft_tokens[:-1]
        ])

        num_rejected_tokens_gpu = torch.where(
            num_draft_tokens_gpu > 0,
            num_draft_tokens_gpu + 1 - valid_sampled_tokens_count,
            torch.zeros_like(num_draft_tokens_gpu))

        query_start_loc_cpu = common_attn_metadata.query_start_loc_cpu

        new_query_len_per_req = (query_start_loc_cpu[1:] -
                                 query_start_loc_cpu[:-1])

        total_num_tokens = query_start_loc_cpu[-1].item()
        token_indices = self.arange[:total_num_tokens]

        spec_common_attn_metadata = CommonAttentionMetadata(
            query_start_loc=common_attn_metadata.query_start_loc,
            seq_lens=common_attn_metadata.seq_lens,
            query_start_loc_cpu=query_start_loc_cpu,
            seq_lens_cpu=common_attn_metadata.seq_lens_cpu,
            num_computed_tokens_cpu=common_attn_metadata.
            num_computed_tokens_cpu,
            num_reqs=common_attn_metadata.num_reqs,
            num_actual_tokens=total_num_tokens,
            max_query_len=new_query_len_per_req.max().item(),
            max_seq_len=common_attn_metadata.seq_lens_cpu.max().item(),
            block_table_tensor=common_attn_metadata.block_table_tensor,
            slot_mapping=common_attn_metadata.slot_mapping[token_indices],
            causal=True,
        )

        token_indices_to_sample = common_attn_metadata.query_start_loc[1:] - 1 \
            - num_rejected_tokens_gpu

        return spec_common_attn_metadata, token_indices, token_indices_to_sample

    def propose_tree(
        self,
        batch_size: int,
        # [num_tokens, vocab_size]
        logits: torch.Tensor,
        # [num_tokens]
        positions: torch.Tensor,
        # [num_tokens, hidden_size]
        hidden_states: torch.Tensor,
        common_attn_metadata: CommonAttentionMetadata,
    ) -> list[torch.Tensor]:
        ubatch_id = dbo_current_ubatch_id()
        tree_attn_metadata_builder = \
            self.runner.attn_groups[0][0].metadata_builders[ubatch_id]
        assert isinstance(tree_attn_metadata_builder,
                          TreeAttentionMetadataBuilder)

        total_num_drafts = self.cu_drafts_per_level[0]
        level_num_drafts = total_num_drafts
        # Sample a draft token for each child at the tree root level.
        num_children = self.child_drafts_per_level[0]
        if num_children == 1:
            draft_token_ids = logits.argmax(dim=-1).view(batch_size, -1)
        else:
            draft_token_ids = torch.topk(logits, num_children,
                                         dim=-1).indices.view(batch_size, -1)
        draft_token_ids_list = [draft_token_ids]
        draft_hidden_states = hidden_states.view(batch_size, 1, -1)

        # Initialize empty tensors for concatenation with the level outputs.
        tree_input_ids = torch.empty(0,
                                     device=self.input_ids.device,
                                     dtype=self.input_ids.dtype)
        tree_positions = torch.empty(0,
                                     device=self.positions.device,
                                     dtype=self.positions.dtype)
        tree_hidden_states = torch.empty(0,
                                         device=self.hidden_states.device,
                                         dtype=self.hidden_states.dtype)
        # Precompute the draft token positions.
        flattened_draft_positions = (
            positions.view(batch_size, -1) +
            self.tree_draft_pos_offsets[:batch_size, :])
        tree_depth = len(self.cu_drafts_per_level)
        for level in range(tree_depth - 1):
            # Get draft positions for RoPE.
            draft_positions = positions + (level + 1)
            exceeds_max_model_len = (positions +
                                     total_num_drafts) >= self.max_model_len
            # Mask out the position ids that exceed the max model length.
            # Otherwise, we may get out-of-range error in RoPE.
            draft_positions = torch.where(
                exceeds_max_model_len,
                0,
                draft_positions,
            ).view(batch_size, -1)

            if level_num_drafts > 1:
                # Repeat the positions for each draft at this level.
                draft_positions = draft_positions.repeat_interleave(
                    level_num_drafts, dim=1)

            if num_children > 1:
                # Repeat draft hidden states for each child.
                draft_hidden_states = draft_hidden_states.repeat_interleave(
                    num_children, dim=1)

            # Concatenate the draft tokens, positions, and hidden states.
            tree_input_ids = torch.cat([tree_input_ids, draft_token_ids],
                                       dim=1)
            tree_positions = torch.cat([tree_positions, draft_positions],
                                       dim=1)
            tree_hidden_states = torch.cat(
                [tree_hidden_states, draft_hidden_states], dim=1)

            # Build new attention metadata for the next level of drafts.
            # This is necessary to support tree attention.
            query_len = total_num_drafts
            common_attn_metadata = replace(
                common_attn_metadata,
                query_start_loc=query_len * self.arange[:batch_size + 1],
                seq_lens=common_attn_metadata.seq_lens + level_num_drafts,
                num_actual_tokens=batch_size * query_len,
                max_query_len=query_len,
            )
            attn_metadata = tree_attn_metadata_builder.build_for_drafting(
                common_attn_metadata=common_attn_metadata,
                draft_index=level + 1,
            )

            # Apply new attention metadata to all layers.
            per_layer_attn_metadata = {}
            for layer_name in self.attn_layer_names:
                per_layer_attn_metadata[layer_name] = attn_metadata

            # Consider max model length.
            attn_metadata.max_seq_len = min(attn_metadata.max_seq_len,
                                            self.max_model_len)
            # For the requests that exceed the max model length, we set the
            # sequence length to 1 to minimize their overheads in attention.
            attn_metadata.seq_lens.masked_fill_(exceeds_max_model_len, 1)

            # Compute the slot mapping.
            query_positions = flattened_draft_positions[:, level:level +
                                                        query_len]
            block_numbers = query_positions // self.block_size
            block_ids = attn_metadata.block_table.gather(dim=1,
                                                         index=block_numbers)
            slot_mapping = (block_ids * self.block_size +
                            query_positions % self.block_size)
            # Mask out the slot mappings that exceed the max model length.
            # Otherwise, the KV cache will be inadvertently updated with the
            # padding tokens.
            slot_mapping[exceeds_max_model_len] = PADDING_SLOT_ID
            attn_metadata.slot_mapping = slot_mapping.view(-1)

            # Copy inputs to buffer for cudagraph.
            num_tokens = attn_metadata.num_actual_tokens
            input_ids = tree_input_ids.view(-1)
            self.input_ids[:num_tokens] = input_ids
            self.positions[:num_tokens] = tree_positions.view(-1)
            self.hidden_states[:num_tokens] = tree_hidden_states.view(
                num_tokens, -1)

            if self.use_cuda_graph and \
                    num_tokens <= self.cudagraph_batch_sizes[-1]:
                num_input_tokens = self.vllm_config.pad_for_cudagraph(
                    num_tokens)
            else:
                num_input_tokens = num_tokens
            # Run the model.
            with set_forward_context(per_layer_attn_metadata,
                                     self.vllm_config,
                                     num_tokens=num_input_tokens):
                last_hidden_states, hidden_states = self.model(
                    input_ids=self.input_ids[:num_input_tokens],
                    positions=self.positions[:num_input_tokens],
                    hidden_states=self.hidden_states[:num_input_tokens],
                    inputs_embeds=None,
                )

            # Get the output hidden states for the draft tokens.
            draft_hidden_states = hidden_states[:num_tokens].view(
                batch_size, query_len, -1)[:, -level_num_drafts:]
            draft_last_hidden_states = last_hidden_states[:num_tokens].view(
                batch_size, query_len, -1)[:, -level_num_drafts:]

            # Get the output logits for the draft tokens.
            logits = self.model.compute_logits(
                draft_last_hidden_states.reshape(batch_size * level_num_drafts,
                                                 -1))

            # Sample a draft token for each child at the next tree level.
            num_children = self.child_drafts_per_level[level + 1]
            if num_children == 1:
                draft_token_ids = logits.argmax(dim=-1).view(batch_size, -1)
            else:
                draft_token_ids = torch.topk(logits, num_children,
                                             dim=-1).indices.view(
                                                 batch_size, -1)
            draft_token_ids_list.append(draft_token_ids)

            # Update the # drafts counters for the next tree level.
            level_num_drafts = self.cu_drafts_per_level[level +
                                                        1] - total_num_drafts
            total_num_drafts = self.cu_drafts_per_level[level + 1]
        return draft_token_ids_list

    def prepare_inputs(
        self,
        common_attn_metadata: CommonAttentionMetadata,
        sampled_token_ids: list[list[int]],
        num_draft_tokens: list[int],
    ) -> tuple[CommonAttentionMetadata, torch.Tensor]:
        """
        This function is used to prepare the inputs for speculative decoding.
        It updates to the common_attn_metadata to account for the rejected
        tokens (and newly sampled tokens). It also returns the token indices
        of the tokens that should be fed to the speculator.
        """
        # E.g.
        #  common_attn_metadata.query_start_loc{_cpu}:
        #       [0, q1, q1 + q2, q1 + q2 + q3]
        #  common_attn_metadata.seq_lens{_cpu}: [s1, s2, s3]
        #  num_rejected_tokens: [n1, n2, n3]
        # This function computes the intermediate values:
        #  num_tokens_per_req: [q1 - n1, q2 - n2, q3 - n3]
        # And returns:
        #  common_attn_metadata.query_start_loc{_cpu}:
        #       [0, q1 - n1, q1 + q2 - n1 - n2, q1 + q2 + q3 - n1 - n2 - n3]
        #  common_attn_metadata.seq_lens{_cpu}:
        #       [s1 - n1 + 1, s2 - n2 + 1, s3 - n3 + 1]
        #  token_indices: [0, 1, ..., q1 - n1 - 1,
        #                 q1, q1 + 1, ..., q1 + q2 - n2 - 1,
        #                 q1 + q2, q1 + q2 + 1, ..., q1 + q2 + q3 - n3 - 1]

        num_rejected_tokens = [
            n + 1 - len(sampled_token_ids[i]) if n > 0 else 0
            for i, n in enumerate(num_draft_tokens)
        ]
        num_rejected_tokens = torch.tensor(num_rejected_tokens,
                                           dtype=torch.int32)

        device = common_attn_metadata.query_start_loc.device
        query_start_loc_cpu = common_attn_metadata.query_start_loc_cpu
        new_seq_lens_cpu = common_attn_metadata.seq_lens_cpu \
            - num_rejected_tokens

        # [0, q1, q1 + q2, q1 + q2 + q3] -> [q1, q2, q3]
        new_query_len_per_req = (query_start_loc_cpu[1:] -
                                 query_start_loc_cpu[:-1])
        # [q1, q2, q3] -> [q1 - n1, q2 - n2, q3 - n3]
        new_num_tokens_per_req = new_query_len_per_req - num_rejected_tokens
        new_num_tokens_per_req_np = new_num_tokens_per_req.numpy()

        # [q1 - n1, q2 - n2, q3 - n3] ->
        # [0, q1 - n1, q1 + q2 - n1 - n2, q1 + q2 + q3 - n1 - n2 - n3]
        new_query_start_loc_cpu = torch.zeros(
            query_start_loc_cpu.shape,
            dtype=torch.int32,
            pin_memory=is_pin_memory_available())
        new_query_start_loc_np = new_query_start_loc_cpu.numpy()
        np.cumsum(new_num_tokens_per_req_np, out=new_query_start_loc_np[1:])

        total_num_tokens = new_query_start_loc_np[-1]
        # Example assuming num_tokens_per_req_np = [2, 4, 3]
        # this implies that `new_query_start_locs` is:
        # [0, 2, 6, 9] ->
        # [0, 0, 2, 2, 2, 2, 6, 6, 6]
        #  _r1_  ____r2____  ___r3__
        new_query_start_locs_expanded = np.repeat(new_query_start_loc_np[:-1],
                                                  new_num_tokens_per_req_np)
        # [0, 1, 2, 3, 4, 5, 6, 7, 8] ->
        # [0, 1, 0, 1, 2, 3, 0, 1, 2]
        #  _r1_  ____r2____  ___r3__
        token_offests = self.token_arange_np[:total_num_tokens] \
            - new_query_start_locs_expanded

        # Expand starting positions to match token pattern
        # [0, q1, q1 + q2] ->
        # [0, 0, q1, q1, q1, q1, q1 + q2, q1 + q2, q1 + q2]
        #  _r1_  _____r2_______  ___________r3____________
        old_query_start_locs_expanded = np.repeat(
            query_start_loc_cpu[:-1].numpy(), new_num_tokens_per_req_np)
        # Final token indices are:
        # [0, 1,                                // req 1
        #  q1 + 0, q1 + 1, q1 + 2, q1 + 3,       // req 2
        #  q1 + q2 + 0, q1 + q2 + 1, q1 + q2 + 2] // req 3
        token_indices_np = token_offests + old_query_start_locs_expanded
        token_indices = torch.from_numpy(token_indices_np).to(
            device, non_blocking=True)

        spec_common_attn_metadata = CommonAttentionMetadata(
            query_start_loc=new_query_start_loc_cpu.to(device,
                                                       non_blocking=True),
            seq_lens=new_seq_lens_cpu.to(device, non_blocking=True),
            query_start_loc_cpu=new_query_start_loc_cpu,
            seq_lens_cpu=new_seq_lens_cpu,
            num_computed_tokens_cpu=common_attn_metadata.
            num_computed_tokens_cpu,
            num_reqs=common_attn_metadata.num_reqs,
            num_actual_tokens=total_num_tokens,
            max_query_len=new_query_len_per_req.max().item(),
            max_seq_len=new_seq_lens_cpu.max().item(),
            block_table_tensor=common_attn_metadata.block_table_tensor,
            slot_mapping=common_attn_metadata.slot_mapping[token_indices],
            causal=True,
        )

        return spec_common_attn_metadata, token_indices

    def load_model(self, target_model: nn.Module) -> None:
        draft_model_config = \
            self.vllm_config.speculative_config.draft_model_config
        target_attn_layer_names = set(
            get_layers_from_vllm_config(self.vllm_config, Attention).keys())

        from vllm.compilation.backends import set_model_tag
        with set_model_tag("eagle_head"):
            self.model = get_model(vllm_config=self.vllm_config,
                                   model_config=draft_model_config)

        draft_attn_layer_names = (
            get_layers_from_vllm_config(self.vllm_config, Attention).keys() -
            target_attn_layer_names)

        self.attn_layer_names = list(draft_attn_layer_names)

        if supports_multimodal(target_model):
            # handle multimodality
            self.model.config.image_token_index = (
                target_model.config.image_token_index)
            target_language_model = target_model.get_language_model()
        else:
            target_language_model = target_model
        # share embed_tokens with the target model if needed
        if get_pp_group().world_size == 1:
            if hasattr(target_language_model.model, 'embed_tokens'):
                target_embed_tokens = target_language_model.model.embed_tokens
            elif hasattr(target_language_model.model, 'embedding'):
                target_embed_tokens = target_language_model.model.embedding
            else:
                raise AttributeError(
                    "Target model does not have 'embed_tokens' or 'embedding' "
                    "attribute")

            # Check if shapes match and we found the embedding
            eagle_shape = self.model.model.embed_tokens.weight.shape
            target_shape = target_embed_tokens.weight.shape
            if eagle_shape == target_shape:
                logger.info(
                    "Assuming the EAGLE head shares the same vocab embedding"
                    " with the target model.")
                del self.model.model.embed_tokens
                self.model.model.embed_tokens = target_embed_tokens
            else:
                logger.info(
                    "The EAGLE head's vocab embedding will be loaded separately"
                    " from the target model.")
        else:
            logger.info(
                "The EAGLE head's vocab embedding will be loaded separately"
                " from the target model.")

        # share lm_head with the target model if needed
        # some model definition do not define lm_head explicitly
        # and reuse embed_tokens for lm_head, e.g., CohereForCausalLM
        if self.vllm_config.speculative_config.method != "eagle3" and \
                hasattr(target_language_model, "lm_head"):
            logger.info("Loading EAGLE LM head weights from the target model.")
            self.model.lm_head = target_language_model.lm_head

    @torch.inference_mode()
    def dummy_run(
        self,
        num_tokens: int,
    ) -> None:
        with set_forward_context(None, self.vllm_config,
                                 num_tokens=num_tokens):
            if self.is_multimodal_model:
                input_ids = None
                inputs_embeds = self.inputs_embeds[:num_tokens]
            else:
                input_ids = self.input_ids[:num_tokens]
                inputs_embeds = None

            self.model(
                input_ids=input_ids,
                positions=self.positions[:num_tokens],
                hidden_states=self.hidden_states[:num_tokens],
                inputs_embeds=inputs_embeds,
            )

    def validate_same_kv_cache_group(self,
                                     kv_cache_config: KVCacheConfig) -> None:
        """
        Validate that all eagle layers belong to the same KVCacheGroup.
        Need this assumption to ensure all eagle layers can use the
        same AttentionMetadata.
        May extend to multiple AttentionMetadata in the future.
        """
        kv_cache_groups: dict[str, int] = {}
        for id, kv_cache_group in enumerate(kv_cache_config.kv_cache_groups):
            for layer_name in kv_cache_group.layer_names:
                kv_cache_groups[layer_name] = id
        assert len(
            set([
                kv_cache_groups[layer_name]
                for layer_name in self.attn_layer_names
            ])
        ) == 1, "All eagle layers should belong to the same kv cache group"

allowed_attn_types instance-attribute

allowed_attn_types: tuple[type[EagleAttentionMetadata], ...]

arange instance-attribute

arange = arange(
    max_num_slots_for_arange, device=device, dtype=int32
)

backup_next_token_ids instance-attribute

backup_next_token_ids = CpuGpuBuffer(
    max_batch_size,
    dtype=int32,
    pin_memory=is_pin_memory_available(),
    device=device,
    with_numpy=True,
)

block_size instance-attribute

block_size = block_size

child_drafts_per_level instance-attribute

child_drafts_per_level = [num_drafts_per_level[0]]

cu_drafts_per_level instance-attribute

cu_drafts_per_level = [num_drafts_per_level[0]]

cudagraph_batch_sizes instance-attribute

cudagraph_batch_sizes = list(
    reversed(cudagraph_capture_sizes)
)

draft_model_config instance-attribute

draft_model_config = draft_model_config

dtype instance-attribute

dtype = dtype

hidden_size instance-attribute

hidden_size = get_hidden_size()

hidden_states instance-attribute

hidden_states = zeros(
    (max_num_tokens, hidden_size),
    dtype=dtype,
    device=device,
)

input_ids instance-attribute

input_ids = zeros(
    max_num_tokens, dtype=int32, device=device
)

inputs_embeds instance-attribute

inputs_embeds = zeros(
    (max_num_tokens, hidden_size),
    dtype=dtype,
    device=device,
)

is_multimodal_model instance-attribute

is_multimodal_model = is_multimodal_model

max_model_len instance-attribute

max_model_len = max_model_len

max_num_tokens instance-attribute

max_num_tokens = max_num_batched_tokens

method instance-attribute

method = method

num_speculative_tokens instance-attribute

num_speculative_tokens = num_speculative_tokens

positions instance-attribute

positions = zeros(
    max_num_tokens, dtype=int64, device=device
)

runner instance-attribute

runner = runner

speculative_config instance-attribute

speculative_config = speculative_config

token_arange_np instance-attribute

token_arange_np = arange(max_num_tokens)

tree_choices instance-attribute

tree_choices: list[tuple[int, ...]] = literal_eval(
    spec_token_tree
)

tree_draft_pos_offsets instance-attribute

tree_draft_pos_offsets = repeat(max_batch_size, 1)

use_cuda_graph instance-attribute

use_cuda_graph = level == PIECEWISE and not enforce_eager

vllm_config instance-attribute

vllm_config = vllm_config

__init__

__init__(
    vllm_config: VllmConfig, device: device, runner=None
)
Source code in vllm/v1/spec_decode/eagle.py
def __init__(
    self,
    vllm_config: VllmConfig,
    device: torch.device,
    runner=None,
):
    self.vllm_config = vllm_config
    self.speculative_config = vllm_config.speculative_config
    self.draft_model_config = self.speculative_config.draft_model_config
    self.method = self.speculative_config.method

    self.runner = runner
    self.dtype = vllm_config.model_config.dtype
    self.max_model_len = vllm_config.model_config.max_model_len
    self.block_size = vllm_config.cache_config.block_size
    self.num_speculative_tokens = (
        self.speculative_config.num_speculative_tokens)
    self.max_num_tokens = (
        vllm_config.scheduler_config.max_num_batched_tokens)
    self.token_arange_np = np.arange(self.max_num_tokens)
    # We need to get the hidden size from the draft model config because
    # the draft model's hidden size can be different from the target model's
    # hidden size (e.g., Llama 3.3 70B).
    self.hidden_size = self.draft_model_config.get_hidden_size()

    self.is_multimodal_model = vllm_config.model_config \
        .is_multimodal_model

    self.use_cuda_graph = (self.vllm_config.compilation_config.level
                           == CompilationLevel.PIECEWISE and
                           not self.vllm_config.model_config.enforce_eager)
    self.cudagraph_batch_sizes = list(
        reversed(
            self.vllm_config.compilation_config.cudagraph_capture_sizes))

    # persistent buffers for cuda graph
    self.input_ids = torch.zeros(self.max_num_tokens,
                                 dtype=torch.int32,
                                 device=device)
    self.positions = torch.zeros(self.max_num_tokens,
                                 dtype=torch.int64,
                                 device=device)
    self.hidden_states = torch.zeros(
        (self.max_num_tokens, self.hidden_size),
        dtype=self.dtype,
        device=device)

    # We need +1 here because the arange is used to set query_start_loc,
    # which has one more element than batch_size.
    max_batch_size = vllm_config.scheduler_config.max_num_seqs
    max_num_slots_for_arange = max(max_batch_size + 1, self.max_num_tokens)
    self.arange = torch.arange(max_num_slots_for_arange,
                               device=device,
                               dtype=torch.int32)

    self.inputs_embeds = torch.zeros(
        (self.max_num_tokens, self.hidden_size),
        dtype=self.dtype,
        device=device)

    self.backup_next_token_ids = CpuGpuBuffer(
        max_batch_size,
        dtype=torch.int32,
        pin_memory=is_pin_memory_available(),
        device=device,
        with_numpy=True)

    # Determine allowed attention backends once during initialization.
    self.allowed_attn_types: tuple[type[EagleAttentionMetadata], ...]
    if current_platform.is_rocm():
        rocm_types = [TritonAttentionMetadata, FlashAttentionMetadata]
        # vllm.v1.attention.backends.rocm_aiter_fa is an optional backend
        if find_spec("vllm.v1.attention.backends.rocm_aiter_fa"):
            from vllm.v1.attention.backends.rocm_aiter_fa import (
                AiterFlashAttentionMetadata)
            rocm_types.append(AiterFlashAttentionMetadata)
        self.allowed_attn_types = tuple(rocm_types)
    else:
        self.allowed_attn_types = (FlashAttentionMetadata,
                                   TreeAttentionMetadata)

    # Parse the speculative token tree.
    spec_token_tree = self.speculative_config.speculative_token_tree
    self.tree_choices: list[tuple[int,
                                  ...]] = ast.literal_eval(spec_token_tree)
    tree_depth = len(self.tree_choices[-1])
    # Precompute per-level properties of the tree.
    num_drafts_per_level = [0] * tree_depth
    for node in self.tree_choices:
        num_drafts_per_level[len(node) - 1] += 1
    self.cu_drafts_per_level = [num_drafts_per_level[0]]
    self.child_drafts_per_level = [num_drafts_per_level[0]]
    for level in range(1, tree_depth):
        self.cu_drafts_per_level.append(self.cu_drafts_per_level[-1] +
                                        num_drafts_per_level[level])
        self.child_drafts_per_level.append(num_drafts_per_level[level] //
                                           num_drafts_per_level[level - 1])
    # Precompute draft position offsets in flattened tree.
    self.tree_draft_pos_offsets = torch.arange(
        1,
        len(self.tree_choices) + 1,
        device=device,
        dtype=torch.int32,
    ).repeat(max_batch_size, 1)

dummy_run

dummy_run(num_tokens: int) -> None
Source code in vllm/v1/spec_decode/eagle.py
@torch.inference_mode()
def dummy_run(
    self,
    num_tokens: int,
) -> None:
    with set_forward_context(None, self.vllm_config,
                             num_tokens=num_tokens):
        if self.is_multimodal_model:
            input_ids = None
            inputs_embeds = self.inputs_embeds[:num_tokens]
        else:
            input_ids = self.input_ids[:num_tokens]
            inputs_embeds = None

        self.model(
            input_ids=input_ids,
            positions=self.positions[:num_tokens],
            hidden_states=self.hidden_states[:num_tokens],
            inputs_embeds=inputs_embeds,
        )

load_model

load_model(target_model: Module) -> None
Source code in vllm/v1/spec_decode/eagle.py
def load_model(self, target_model: nn.Module) -> None:
    draft_model_config = \
        self.vllm_config.speculative_config.draft_model_config
    target_attn_layer_names = set(
        get_layers_from_vllm_config(self.vllm_config, Attention).keys())

    from vllm.compilation.backends import set_model_tag
    with set_model_tag("eagle_head"):
        self.model = get_model(vllm_config=self.vllm_config,
                               model_config=draft_model_config)

    draft_attn_layer_names = (
        get_layers_from_vllm_config(self.vllm_config, Attention).keys() -
        target_attn_layer_names)

    self.attn_layer_names = list(draft_attn_layer_names)

    if supports_multimodal(target_model):
        # handle multimodality
        self.model.config.image_token_index = (
            target_model.config.image_token_index)
        target_language_model = target_model.get_language_model()
    else:
        target_language_model = target_model
    # share embed_tokens with the target model if needed
    if get_pp_group().world_size == 1:
        if hasattr(target_language_model.model, 'embed_tokens'):
            target_embed_tokens = target_language_model.model.embed_tokens
        elif hasattr(target_language_model.model, 'embedding'):
            target_embed_tokens = target_language_model.model.embedding
        else:
            raise AttributeError(
                "Target model does not have 'embed_tokens' or 'embedding' "
                "attribute")

        # Check if shapes match and we found the embedding
        eagle_shape = self.model.model.embed_tokens.weight.shape
        target_shape = target_embed_tokens.weight.shape
        if eagle_shape == target_shape:
            logger.info(
                "Assuming the EAGLE head shares the same vocab embedding"
                " with the target model.")
            del self.model.model.embed_tokens
            self.model.model.embed_tokens = target_embed_tokens
        else:
            logger.info(
                "The EAGLE head's vocab embedding will be loaded separately"
                " from the target model.")
    else:
        logger.info(
            "The EAGLE head's vocab embedding will be loaded separately"
            " from the target model.")

    # share lm_head with the target model if needed
    # some model definition do not define lm_head explicitly
    # and reuse embed_tokens for lm_head, e.g., CohereForCausalLM
    if self.vllm_config.speculative_config.method != "eagle3" and \
            hasattr(target_language_model, "lm_head"):
        logger.info("Loading EAGLE LM head weights from the target model.")
        self.model.lm_head = target_language_model.lm_head

prepare_inputs

prepare_inputs(
    common_attn_metadata: CommonAttentionMetadata,
    sampled_token_ids: list[list[int]],
    num_draft_tokens: list[int],
) -> tuple[CommonAttentionMetadata, Tensor]

This function is used to prepare the inputs for speculative decoding. It updates to the common_attn_metadata to account for the rejected tokens (and newly sampled tokens). It also returns the token indices of the tokens that should be fed to the speculator.

Source code in vllm/v1/spec_decode/eagle.py
def prepare_inputs(
    self,
    common_attn_metadata: CommonAttentionMetadata,
    sampled_token_ids: list[list[int]],
    num_draft_tokens: list[int],
) -> tuple[CommonAttentionMetadata, torch.Tensor]:
    """
    This function is used to prepare the inputs for speculative decoding.
    It updates to the common_attn_metadata to account for the rejected
    tokens (and newly sampled tokens). It also returns the token indices
    of the tokens that should be fed to the speculator.
    """
    # E.g.
    #  common_attn_metadata.query_start_loc{_cpu}:
    #       [0, q1, q1 + q2, q1 + q2 + q3]
    #  common_attn_metadata.seq_lens{_cpu}: [s1, s2, s3]
    #  num_rejected_tokens: [n1, n2, n3]
    # This function computes the intermediate values:
    #  num_tokens_per_req: [q1 - n1, q2 - n2, q3 - n3]
    # And returns:
    #  common_attn_metadata.query_start_loc{_cpu}:
    #       [0, q1 - n1, q1 + q2 - n1 - n2, q1 + q2 + q3 - n1 - n2 - n3]
    #  common_attn_metadata.seq_lens{_cpu}:
    #       [s1 - n1 + 1, s2 - n2 + 1, s3 - n3 + 1]
    #  token_indices: [0, 1, ..., q1 - n1 - 1,
    #                 q1, q1 + 1, ..., q1 + q2 - n2 - 1,
    #                 q1 + q2, q1 + q2 + 1, ..., q1 + q2 + q3 - n3 - 1]

    num_rejected_tokens = [
        n + 1 - len(sampled_token_ids[i]) if n > 0 else 0
        for i, n in enumerate(num_draft_tokens)
    ]
    num_rejected_tokens = torch.tensor(num_rejected_tokens,
                                       dtype=torch.int32)

    device = common_attn_metadata.query_start_loc.device
    query_start_loc_cpu = common_attn_metadata.query_start_loc_cpu
    new_seq_lens_cpu = common_attn_metadata.seq_lens_cpu \
        - num_rejected_tokens

    # [0, q1, q1 + q2, q1 + q2 + q3] -> [q1, q2, q3]
    new_query_len_per_req = (query_start_loc_cpu[1:] -
                             query_start_loc_cpu[:-1])
    # [q1, q2, q3] -> [q1 - n1, q2 - n2, q3 - n3]
    new_num_tokens_per_req = new_query_len_per_req - num_rejected_tokens
    new_num_tokens_per_req_np = new_num_tokens_per_req.numpy()

    # [q1 - n1, q2 - n2, q3 - n3] ->
    # [0, q1 - n1, q1 + q2 - n1 - n2, q1 + q2 + q3 - n1 - n2 - n3]
    new_query_start_loc_cpu = torch.zeros(
        query_start_loc_cpu.shape,
        dtype=torch.int32,
        pin_memory=is_pin_memory_available())
    new_query_start_loc_np = new_query_start_loc_cpu.numpy()
    np.cumsum(new_num_tokens_per_req_np, out=new_query_start_loc_np[1:])

    total_num_tokens = new_query_start_loc_np[-1]
    # Example assuming num_tokens_per_req_np = [2, 4, 3]
    # this implies that `new_query_start_locs` is:
    # [0, 2, 6, 9] ->
    # [0, 0, 2, 2, 2, 2, 6, 6, 6]
    #  _r1_  ____r2____  ___r3__
    new_query_start_locs_expanded = np.repeat(new_query_start_loc_np[:-1],
                                              new_num_tokens_per_req_np)
    # [0, 1, 2, 3, 4, 5, 6, 7, 8] ->
    # [0, 1, 0, 1, 2, 3, 0, 1, 2]
    #  _r1_  ____r2____  ___r3__
    token_offests = self.token_arange_np[:total_num_tokens] \
        - new_query_start_locs_expanded

    # Expand starting positions to match token pattern
    # [0, q1, q1 + q2] ->
    # [0, 0, q1, q1, q1, q1, q1 + q2, q1 + q2, q1 + q2]
    #  _r1_  _____r2_______  ___________r3____________
    old_query_start_locs_expanded = np.repeat(
        query_start_loc_cpu[:-1].numpy(), new_num_tokens_per_req_np)
    # Final token indices are:
    # [0, 1,                                // req 1
    #  q1 + 0, q1 + 1, q1 + 2, q1 + 3,       // req 2
    #  q1 + q2 + 0, q1 + q2 + 1, q1 + q2 + 2] // req 3
    token_indices_np = token_offests + old_query_start_locs_expanded
    token_indices = torch.from_numpy(token_indices_np).to(
        device, non_blocking=True)

    spec_common_attn_metadata = CommonAttentionMetadata(
        query_start_loc=new_query_start_loc_cpu.to(device,
                                                   non_blocking=True),
        seq_lens=new_seq_lens_cpu.to(device, non_blocking=True),
        query_start_loc_cpu=new_query_start_loc_cpu,
        seq_lens_cpu=new_seq_lens_cpu,
        num_computed_tokens_cpu=common_attn_metadata.
        num_computed_tokens_cpu,
        num_reqs=common_attn_metadata.num_reqs,
        num_actual_tokens=total_num_tokens,
        max_query_len=new_query_len_per_req.max().item(),
        max_seq_len=new_seq_lens_cpu.max().item(),
        block_table_tensor=common_attn_metadata.block_table_tensor,
        slot_mapping=common_attn_metadata.slot_mapping[token_indices],
        causal=True,
    )

    return spec_common_attn_metadata, token_indices

prepare_inputs_padded

prepare_inputs_padded(
    common_attn_metadata: CommonAttentionMetadata,
    spec_decode_metadata: SpecDecodeMetadata,
    valid_sampled_tokens_count: Tensor,
) -> tuple[CommonAttentionMetadata, Tensor, Tensor]

This function is used to prepare the inputs for speculative decoding It updates the common_attn_metadata for speculative decoding, but does not consider the rejected tokens. Instead, all tokens are included as inputs to the speculator, with the rejected tokens used as padding and filtered out later by token_indices_to_sample. No blocking CPU operations should be introduced in this function.

Source code in vllm/v1/spec_decode/eagle.py
def prepare_inputs_padded(self,
                            common_attn_metadata: CommonAttentionMetadata,
                            spec_decode_metadata: SpecDecodeMetadata,
                            valid_sampled_tokens_count: torch.Tensor) -> \
                tuple[CommonAttentionMetadata, torch.Tensor, torch.Tensor]:
    """
    This function is used to prepare the inputs for speculative decoding
    It updates the common_attn_metadata for speculative decoding,
    but does not consider the rejected tokens. Instead, all tokens
    are included as inputs to the speculator, with the rejected tokens
    used as padding and filtered out later by `token_indices_to_sample`.
    No blocking CPU operations should be introduced in this function.
    """
    num_draft_tokens_gpu = torch.cat([
        spec_decode_metadata.cu_num_draft_tokens[0:1],
        spec_decode_metadata.cu_num_draft_tokens[1:] -
        spec_decode_metadata.cu_num_draft_tokens[:-1]
    ])

    num_rejected_tokens_gpu = torch.where(
        num_draft_tokens_gpu > 0,
        num_draft_tokens_gpu + 1 - valid_sampled_tokens_count,
        torch.zeros_like(num_draft_tokens_gpu))

    query_start_loc_cpu = common_attn_metadata.query_start_loc_cpu

    new_query_len_per_req = (query_start_loc_cpu[1:] -
                             query_start_loc_cpu[:-1])

    total_num_tokens = query_start_loc_cpu[-1].item()
    token_indices = self.arange[:total_num_tokens]

    spec_common_attn_metadata = CommonAttentionMetadata(
        query_start_loc=common_attn_metadata.query_start_loc,
        seq_lens=common_attn_metadata.seq_lens,
        query_start_loc_cpu=query_start_loc_cpu,
        seq_lens_cpu=common_attn_metadata.seq_lens_cpu,
        num_computed_tokens_cpu=common_attn_metadata.
        num_computed_tokens_cpu,
        num_reqs=common_attn_metadata.num_reqs,
        num_actual_tokens=total_num_tokens,
        max_query_len=new_query_len_per_req.max().item(),
        max_seq_len=common_attn_metadata.seq_lens_cpu.max().item(),
        block_table_tensor=common_attn_metadata.block_table_tensor,
        slot_mapping=common_attn_metadata.slot_mapping[token_indices],
        causal=True,
    )

    token_indices_to_sample = common_attn_metadata.query_start_loc[1:] - 1 \
        - num_rejected_tokens_gpu

    return spec_common_attn_metadata, token_indices, token_indices_to_sample

prepare_next_token_ids_cpu

prepare_next_token_ids_cpu(
    sampled_token_ids: list[list[int]],
    requests: dict[str, CachedRequestState],
    gpu_input_batch: InputBatch,
    num_scheduled_tokens: dict[str, int],
) -> Tensor

This function is used to prepare the inputs for speculative decoding. It calculates the next token ids for each request based on the sampled token ids from the CPU. If a request has no sampled token ids (e.g., during the initial decoding steps), it falls back to using the request state to get the next token id.

Source code in vllm/v1/spec_decode/eagle.py
def prepare_next_token_ids_cpu(
        self, sampled_token_ids: list[list[int]],
        requests: dict[str,
                       CachedRequestState], gpu_input_batch: InputBatch,
        num_scheduled_tokens: dict[str, int]) -> torch.Tensor:
    """
    This function is used to prepare the inputs for speculative decoding.
    It calculates the next token ids for each request based on the sampled
    token ids from the CPU. If a request has no sampled token ids (e.g.,
    during the initial decoding steps), it falls back to using the request
    state to get the next token id.
    """
    req_ids = gpu_input_batch.req_ids
    next_token_ids: list[int] = []
    for i, token_ids in enumerate(sampled_token_ids):
        if token_ids:
            # Common case.
            next_token_id = token_ids[-1]
        else:
            # Partial prefill (rare case).
            # Get the next token id from the request state.
            req_id = req_ids[i]
            req_state = requests[req_id]
            seq_len = (req_state.num_computed_tokens +
                       num_scheduled_tokens[req_id])
            next_token_id = req_state.get_token_id(seq_len)
        next_token_ids.append(next_token_id)
    next_token_ids = torch.tensor(next_token_ids,
                                  dtype=torch.int32,
                                  device=self.input_ids.device)
    return next_token_ids

prepare_next_token_ids_padded

prepare_next_token_ids_padded(
    common_attn_metadata: CommonAttentionMetadata,
    sampled_token_ids: Tensor,
    requests: dict[str, CachedRequestState],
    gpu_input_batch: InputBatch,
    discard_request_indices: Tensor,
    num_discarded_requests: int,
) -> tuple[Tensor, Tensor]

This function is used to prepare the inputs for speculative decoding. It calculates the next token ids and the number of valid sampled tokens for each request, considering the "discarded" requests whose next token is not sampled and comes from request.get_token_id() instead. It also accounts for the rejected tokens in sampled_token_ids. This function must use device functions to operate on the inputs, and should not introduce any blocking CPU-GPU synchronization.

Source code in vllm/v1/spec_decode/eagle.py
def prepare_next_token_ids_padded(self,
                           common_attn_metadata: CommonAttentionMetadata,
                           sampled_token_ids: torch.Tensor,
                           requests: dict[str, CachedRequestState],
                           gpu_input_batch: InputBatch,
                           discard_request_indices: torch.Tensor,
                           num_discarded_requests: int) -> \
                            tuple[torch.Tensor, torch.Tensor]:
    """
    This function is used to prepare the inputs for speculative decoding.
    It calculates the next token ids and the number of valid sampled tokens
    for each request, considering the "discarded" requests whose next token
    is not sampled and comes from `request.get_token_id()` instead.
    It also accounts for the rejected tokens in `sampled_token_ids`.
    This function must use device functions to operate on the inputs, and
    should not introduce any blocking CPU-GPU synchronization.
    """
    # TODO(Ben): Combine this into a custom fused kernel

    # Precompute get_token_id for when there is no valid next token
    num_reqs = gpu_input_batch.num_reqs
    self.backup_next_token_ids.np[:num_reqs] = np.array([
        requests[gpu_input_batch.req_ids[i]].get_token_id(
            common_attn_metadata.seq_lens_cpu[i].item())
        for i in range(num_reqs)
    ])
    self.backup_next_token_ids.copy_to_gpu(num_reqs)

    # Mask out the sampled tokens indices that should not be sampled.
    discard_sampled_tokens_req_indices = \
        discard_request_indices[:num_discarded_requests]

    valid_sampled_token_ids_gpu = sampled_token_ids.clone()
    valid_sampled_token_ids_gpu.index_fill_(
        0, discard_sampled_tokens_req_indices, -1)

    # Generate a mask for all valid tokens within those requests
    max_gen_len = sampled_token_ids.shape[-1]
    if max_gen_len == 1:
        valid_mask = torch.ones_like(valid_sampled_token_ids_gpu,
                                     dtype=torch.bool)
    else:
        valid_mask = (
            (valid_sampled_token_ids_gpu != -1) &
            (valid_sampled_token_ids_gpu < gpu_input_batch.vocab_size))

    # Count the number of valid tokens in each request
    valid_sampled_tokens_count = valid_mask.sum(dim=1)

    # Get the rightmost valid index per row
    last_valid_indices = valid_sampled_tokens_count - 1
    last_valid_indices_safe = torch.clamp(last_valid_indices, min=0)

    # Get last valid token from each row
    # (assume undefined state where there is no valid token)
    selected_tokens = torch.gather(
        valid_sampled_token_ids_gpu, 1,
        last_valid_indices_safe.unsqueeze(1)).squeeze(1)

    # Use last token if valid, pre-computed backup if not
    batch_size = valid_sampled_token_ids_gpu.shape[0]
    next_token_ids = torch.where(
        last_valid_indices != -1, selected_tokens,
        self.backup_next_token_ids.gpu[:batch_size])

    return next_token_ids, valid_sampled_tokens_count

propose

propose(
    target_token_ids: Tensor,
    target_positions: Tensor,
    target_hidden_states: Tensor,
    next_token_ids: Tensor,
    last_token_indices: Optional[Tensor],
    common_attn_metadata: CommonAttentionMetadata,
    sampling_metadata: SamplingMetadata,
    mm_embeds: Optional[list[Tensor]] = None,
) -> Tensor
Source code in vllm/v1/spec_decode/eagle.py
def propose(
    self,
    # [num_tokens]
    target_token_ids: torch.Tensor,
    # [num_tokens]
    target_positions: torch.Tensor,
    # [num_tokens, hidden_size]
    target_hidden_states: torch.Tensor,
    # [batch_size]
    next_token_ids: torch.Tensor,
    last_token_indices: Optional[torch.Tensor],
    common_attn_metadata: CommonAttentionMetadata,
    sampling_metadata: SamplingMetadata,
    mm_embeds: Optional[list[torch.Tensor]] = None,
) -> torch.Tensor:
    num_tokens = target_token_ids.shape[0]
    batch_size = next_token_ids.shape[0]

    if last_token_indices is None:
        last_token_indices = common_attn_metadata.query_start_loc[1:] - 1

    if self.method == "eagle3":
        assert isinstance(self.model, Eagle3LlamaForCausalLM)
        target_hidden_states = self.model.combine_hidden_states(
            target_hidden_states)
        assert target_hidden_states.shape[-1] == self.hidden_size

    # Shift the input ids by one token.
    # E.g., [a1, b1, b2, c1, c2, c3] -> [b1, b2, c1, c2, c3, c3]
    self.input_ids[:num_tokens - 1] = target_token_ids[1:]
    # Replace the last token with the next token.
    # E.g., [b1, b2, c1, c2, c3, c3] -> [a2, b2, b3, c2, c3, c4]
    self.input_ids[last_token_indices] = next_token_ids

    assert self.runner is not None

    # FIXME: need to consider multiple kv_cache_groups
    ubatch_id = dbo_current_ubatch_id()
    attn_metadata_builder = \
        self.runner.attn_groups[0][0].metadata_builders[ubatch_id]
    attn_metadata = attn_metadata_builder.build_for_drafting(
        common_attn_metadata=common_attn_metadata, draft_index=0)

    # At this moment, we assume all eagle layers belong to the same KV
    # cache group, thus using the same attention metadata.
    per_layer_attn_metadata = {}
    for layer_name in self.attn_layer_names:
        per_layer_attn_metadata[layer_name] = attn_metadata
    if self.use_cuda_graph and \
            num_tokens <= self.cudagraph_batch_sizes[-1]:
        num_input_tokens = self.vllm_config.pad_for_cudagraph(num_tokens)
    else:
        num_input_tokens = num_tokens
    # copy inputs to buffer for cudagraph
    self.positions[:num_tokens] = target_positions
    self.hidden_states[:num_tokens] = target_hidden_states
    if self.is_multimodal_model:
        input_ids = self.input_ids[:num_tokens]
        inputs_embeds = self.model.get_input_embeddings(
            input_ids,
            multimodal_embeddings=mm_embeds or None,
        )
        self.inputs_embeds[:num_tokens] = inputs_embeds
        inputs_embeds = self.inputs_embeds[:num_input_tokens]
        input_ids = None
    else:
        inputs_embeds = None
        input_ids = self.input_ids[:num_input_tokens]

    with set_forward_context(per_layer_attn_metadata,
                             self.vllm_config,
                             num_tokens=num_input_tokens):
        ret_hidden_states = self.model(
            input_ids=input_ids,
            positions=self.positions[:num_input_tokens],
            hidden_states=self.hidden_states[:num_input_tokens],
            inputs_embeds=inputs_embeds,
        )
        if self.method in ("deepseek_mtp", "ernie_mtp", "qwen3_next_mtp"):
            last_hidden_states = ret_hidden_states
            hidden_states = last_hidden_states
        else:
            last_hidden_states, hidden_states = ret_hidden_states
    sample_hidden_states = last_hidden_states[last_token_indices]
    logits = self.model.compute_logits(sample_hidden_states)

    # Early exit if there is only one draft token to be generated.
    if self.num_speculative_tokens == 1:
        draft_token_ids = logits.argmax(dim=-1)
        return draft_token_ids.view(-1, 1)

    positions = target_positions[last_token_indices]
    hidden_states = hidden_states[last_token_indices]

    if isinstance(attn_metadata, TreeAttentionMetadata):
        # Draft using tree attention.
        draft_token_ids_list = self.propose_tree(
            batch_size=batch_size,
            logits=logits,
            positions=positions,
            hidden_states=hidden_states,
            common_attn_metadata=common_attn_metadata,
        )
        # [batch_size, num_tree_tokens]
        return torch.cat(draft_token_ids_list, dim=1)

    draft_token_ids = logits.argmax(dim=-1)

    if not isinstance(attn_metadata, self.allowed_attn_types):
        raise ValueError(
            f"Unsupported attention metadata type for speculative "
            "decoding with num_speculative_tokens > 1: "
            f"{type(attn_metadata)}. Supported types are: "
            f"{self.allowed_attn_types}")

    # Generate the remaining draft tokens.
    draft_token_ids_list = [draft_token_ids]

    if self.use_cuda_graph and \
            batch_size <= self.cudagraph_batch_sizes[-1]:
        input_batch_size = self.vllm_config.pad_for_cudagraph(batch_size)
    else:
        input_batch_size = batch_size

    common_attn_metadata.num_actual_tokens = batch_size
    common_attn_metadata.max_query_len = 1
    common_attn_metadata.query_start_loc = self.arange[:batch_size + 1]
    common_attn_metadata.query_start_loc_cpu = torch.from_numpy(
        self.token_arange_np[:batch_size + 1]).clone()
    for token_index in range(self.num_speculative_tokens - 1):
        # Update the inputs.
        # cast to int32 is crucial when eagle model is compiled.
        # tensor.argmax() returns int64 by default.
        input_ids = draft_token_ids_list[-1].int()
        positions += 1

        # NOTE(woosuk): We should handle the case where the draft model
        # generates tokens beyond the max model length. Since it is complex
        # to remove such requests from the batch, we keep them in the batch
        # but adjust the position ids and slot mappings to avoid the
        # out-of-range access during the model execution. The draft tokens
        # generated with this adjustment should be ignored.
        exceeds_max_model_len = positions >= self.max_model_len
        # Mask out the position ids that exceed the max model length.
        # Otherwise, we may get out-of-range error in RoPE.
        clamped_positions = torch.where(exceeds_max_model_len, 0,
                                        positions)

        # Increment the sequence lengths.
        common_attn_metadata.seq_lens += 1
        common_attn_metadata.seq_lens_cpu += 1
        # For the requests that exceed the max model length, we set the
        # sequence length to 1 to minimize their overheads in attention.
        common_attn_metadata.seq_lens.masked_fill_(exceeds_max_model_len,
                                                   1)

        common_attn_metadata.num_computed_tokens_cpu = \
            common_attn_metadata.seq_lens_cpu - 1

        # Compute the slot mapping.
        block_numbers = clamped_positions // self.block_size
        block_ids = common_attn_metadata.block_table_tensor.gather(
            dim=1, index=block_numbers.view(-1, 1))
        block_ids = block_ids.view(-1)
        common_attn_metadata.slot_mapping = (
            block_ids * self.block_size +
            clamped_positions % self.block_size)
        # Mask out the slot mappings that exceed the max model length.
        # Otherwise, the KV cache will be inadvertently updated with the
        # padding tokens.
        common_attn_metadata.slot_mapping.masked_fill_(
            exceeds_max_model_len, PADDING_SLOT_ID)

        # Rebuild attention metadata
        attn_metadata_builder = \
            self.runner.attn_groups[0][0].metadata_builders[ubatch_id]
        attn_metadata = attn_metadata_builder\
            .build_for_drafting(common_attn_metadata=common_attn_metadata,
                            draft_index=token_index + 1)
        for layer_name in self.attn_layer_names:
            per_layer_attn_metadata[layer_name] = attn_metadata

        # copy inputs to buffer for cudagraph
        self.input_ids[:batch_size] = input_ids
        self.positions[:batch_size] = clamped_positions
        self.hidden_states[:batch_size] = hidden_states
        if self.is_multimodal_model:
            inputs_embeds = self.model.get_input_embeddings(input_ids)
            self.inputs_embeds[:batch_size] = inputs_embeds
            inputs_embeds = self.inputs_embeds[:input_batch_size]
            input_ids = None
        else:
            inputs_embeds = None
            input_ids = self.input_ids[:input_batch_size]

        # Run the model.
        with set_forward_context(per_layer_attn_metadata,
                                 self.vllm_config,
                                 num_tokens=input_batch_size):
            ret_hidden_states = self.model(
                input_ids=input_ids,
                positions=self.positions[:input_batch_size],
                hidden_states=self.hidden_states[:input_batch_size],
                inputs_embeds=inputs_embeds,
            )
            if self.method in ("deepseek_mtp", "ernie_mtp",
                               "qwen3_next_mtp"):
                last_hidden_states = ret_hidden_states
                hidden_states = ret_hidden_states
            else:
                last_hidden_states, hidden_states = ret_hidden_states
        hidden_states = hidden_states[:batch_size]
        logits = self.model.compute_logits(last_hidden_states[:batch_size])
        draft_token_ids = logits.argmax(dim=-1)
        draft_token_ids_list.append(draft_token_ids)

    # [batch_size, num_speculative_tokens]
    draft_token_ids = torch.stack(draft_token_ids_list, dim=1)
    return draft_token_ids

propose_tree

propose_tree(
    batch_size: int,
    logits: Tensor,
    positions: Tensor,
    hidden_states: Tensor,
    common_attn_metadata: CommonAttentionMetadata,
) -> list[Tensor]
Source code in vllm/v1/spec_decode/eagle.py
def propose_tree(
    self,
    batch_size: int,
    # [num_tokens, vocab_size]
    logits: torch.Tensor,
    # [num_tokens]
    positions: torch.Tensor,
    # [num_tokens, hidden_size]
    hidden_states: torch.Tensor,
    common_attn_metadata: CommonAttentionMetadata,
) -> list[torch.Tensor]:
    ubatch_id = dbo_current_ubatch_id()
    tree_attn_metadata_builder = \
        self.runner.attn_groups[0][0].metadata_builders[ubatch_id]
    assert isinstance(tree_attn_metadata_builder,
                      TreeAttentionMetadataBuilder)

    total_num_drafts = self.cu_drafts_per_level[0]
    level_num_drafts = total_num_drafts
    # Sample a draft token for each child at the tree root level.
    num_children = self.child_drafts_per_level[0]
    if num_children == 1:
        draft_token_ids = logits.argmax(dim=-1).view(batch_size, -1)
    else:
        draft_token_ids = torch.topk(logits, num_children,
                                     dim=-1).indices.view(batch_size, -1)
    draft_token_ids_list = [draft_token_ids]
    draft_hidden_states = hidden_states.view(batch_size, 1, -1)

    # Initialize empty tensors for concatenation with the level outputs.
    tree_input_ids = torch.empty(0,
                                 device=self.input_ids.device,
                                 dtype=self.input_ids.dtype)
    tree_positions = torch.empty(0,
                                 device=self.positions.device,
                                 dtype=self.positions.dtype)
    tree_hidden_states = torch.empty(0,
                                     device=self.hidden_states.device,
                                     dtype=self.hidden_states.dtype)
    # Precompute the draft token positions.
    flattened_draft_positions = (
        positions.view(batch_size, -1) +
        self.tree_draft_pos_offsets[:batch_size, :])
    tree_depth = len(self.cu_drafts_per_level)
    for level in range(tree_depth - 1):
        # Get draft positions for RoPE.
        draft_positions = positions + (level + 1)
        exceeds_max_model_len = (positions +
                                 total_num_drafts) >= self.max_model_len
        # Mask out the position ids that exceed the max model length.
        # Otherwise, we may get out-of-range error in RoPE.
        draft_positions = torch.where(
            exceeds_max_model_len,
            0,
            draft_positions,
        ).view(batch_size, -1)

        if level_num_drafts > 1:
            # Repeat the positions for each draft at this level.
            draft_positions = draft_positions.repeat_interleave(
                level_num_drafts, dim=1)

        if num_children > 1:
            # Repeat draft hidden states for each child.
            draft_hidden_states = draft_hidden_states.repeat_interleave(
                num_children, dim=1)

        # Concatenate the draft tokens, positions, and hidden states.
        tree_input_ids = torch.cat([tree_input_ids, draft_token_ids],
                                   dim=1)
        tree_positions = torch.cat([tree_positions, draft_positions],
                                   dim=1)
        tree_hidden_states = torch.cat(
            [tree_hidden_states, draft_hidden_states], dim=1)

        # Build new attention metadata for the next level of drafts.
        # This is necessary to support tree attention.
        query_len = total_num_drafts
        common_attn_metadata = replace(
            common_attn_metadata,
            query_start_loc=query_len * self.arange[:batch_size + 1],
            seq_lens=common_attn_metadata.seq_lens + level_num_drafts,
            num_actual_tokens=batch_size * query_len,
            max_query_len=query_len,
        )
        attn_metadata = tree_attn_metadata_builder.build_for_drafting(
            common_attn_metadata=common_attn_metadata,
            draft_index=level + 1,
        )

        # Apply new attention metadata to all layers.
        per_layer_attn_metadata = {}
        for layer_name in self.attn_layer_names:
            per_layer_attn_metadata[layer_name] = attn_metadata

        # Consider max model length.
        attn_metadata.max_seq_len = min(attn_metadata.max_seq_len,
                                        self.max_model_len)
        # For the requests that exceed the max model length, we set the
        # sequence length to 1 to minimize their overheads in attention.
        attn_metadata.seq_lens.masked_fill_(exceeds_max_model_len, 1)

        # Compute the slot mapping.
        query_positions = flattened_draft_positions[:, level:level +
                                                    query_len]
        block_numbers = query_positions // self.block_size
        block_ids = attn_metadata.block_table.gather(dim=1,
                                                     index=block_numbers)
        slot_mapping = (block_ids * self.block_size +
                        query_positions % self.block_size)
        # Mask out the slot mappings that exceed the max model length.
        # Otherwise, the KV cache will be inadvertently updated with the
        # padding tokens.
        slot_mapping[exceeds_max_model_len] = PADDING_SLOT_ID
        attn_metadata.slot_mapping = slot_mapping.view(-1)

        # Copy inputs to buffer for cudagraph.
        num_tokens = attn_metadata.num_actual_tokens
        input_ids = tree_input_ids.view(-1)
        self.input_ids[:num_tokens] = input_ids
        self.positions[:num_tokens] = tree_positions.view(-1)
        self.hidden_states[:num_tokens] = tree_hidden_states.view(
            num_tokens, -1)

        if self.use_cuda_graph and \
                num_tokens <= self.cudagraph_batch_sizes[-1]:
            num_input_tokens = self.vllm_config.pad_for_cudagraph(
                num_tokens)
        else:
            num_input_tokens = num_tokens
        # Run the model.
        with set_forward_context(per_layer_attn_metadata,
                                 self.vllm_config,
                                 num_tokens=num_input_tokens):
            last_hidden_states, hidden_states = self.model(
                input_ids=self.input_ids[:num_input_tokens],
                positions=self.positions[:num_input_tokens],
                hidden_states=self.hidden_states[:num_input_tokens],
                inputs_embeds=None,
            )

        # Get the output hidden states for the draft tokens.
        draft_hidden_states = hidden_states[:num_tokens].view(
            batch_size, query_len, -1)[:, -level_num_drafts:]
        draft_last_hidden_states = last_hidden_states[:num_tokens].view(
            batch_size, query_len, -1)[:, -level_num_drafts:]

        # Get the output logits for the draft tokens.
        logits = self.model.compute_logits(
            draft_last_hidden_states.reshape(batch_size * level_num_drafts,
                                             -1))

        # Sample a draft token for each child at the next tree level.
        num_children = self.child_drafts_per_level[level + 1]
        if num_children == 1:
            draft_token_ids = logits.argmax(dim=-1).view(batch_size, -1)
        else:
            draft_token_ids = torch.topk(logits, num_children,
                                         dim=-1).indices.view(
                                             batch_size, -1)
        draft_token_ids_list.append(draft_token_ids)

        # Update the # drafts counters for the next tree level.
        level_num_drafts = self.cu_drafts_per_level[level +
                                                    1] - total_num_drafts
        total_num_drafts = self.cu_drafts_per_level[level + 1]
    return draft_token_ids_list

validate_same_kv_cache_group

validate_same_kv_cache_group(
    kv_cache_config: KVCacheConfig,
) -> None

Validate that all eagle layers belong to the same KVCacheGroup. Need this assumption to ensure all eagle layers can use the same AttentionMetadata. May extend to multiple AttentionMetadata in the future.

Source code in vllm/v1/spec_decode/eagle.py
def validate_same_kv_cache_group(self,
                                 kv_cache_config: KVCacheConfig) -> None:
    """
    Validate that all eagle layers belong to the same KVCacheGroup.
    Need this assumption to ensure all eagle layers can use the
    same AttentionMetadata.
    May extend to multiple AttentionMetadata in the future.
    """
    kv_cache_groups: dict[str, int] = {}
    for id, kv_cache_group in enumerate(kv_cache_config.kv_cache_groups):
        for layer_name in kv_cache_group.layer_names:
            kv_cache_groups[layer_name] = id
    assert len(
        set([
            kv_cache_groups[layer_name]
            for layer_name in self.attn_layer_names
        ])
    ) == 1, "All eagle layers should belong to the same kv cache group"

compute_probs_and_sample_next_token

compute_probs_and_sample_next_token(
    logits: Tensor, sampling_metadata: SamplingMetadata
) -> tuple[Tensor, Tensor]
Source code in vllm/v1/spec_decode/eagle.py
def compute_probs_and_sample_next_token(
    logits: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> tuple[torch.Tensor, torch.Tensor]:
    if sampling_metadata.all_greedy:
        # For greedy requests, draft_probs is not used in rejection sampling.
        # Therefore, we can just return the logits.
        probs = logits
        next_token_ids = logits.argmax(dim=-1)
        return next_token_ids, probs

    is_greedy = sampling_metadata.temperature == -1
    temperature = torch.where(is_greedy, 1.0, sampling_metadata.temperature)
    logits.div_(temperature.view(-1, 1))
    probs = logits.softmax(dim=-1, dtype=torch.float32)

    # NOTE(woosuk): Currently, we ignore most of the sampling parameters in
    # generating the draft tokens. We only use the temperature. While this
    # could degrade the acceptance rate, it does not affect the distribution
    # of the generated tokens after rejection sampling.

    # TODO(woosuk): Consider seeds.
    q = torch.empty_like(probs)
    q.exponential_()
    # NOTE(woosuk): We shouldn't use `probs.div_(q)` because the draft_probs
    # will be used later for rejection sampling.
    next_token_ids = probs.div(q).argmax(dim=-1).view(-1)
    if not sampling_metadata.all_random:
        greedy_token_ids = probs.argmax(dim=-1)
        next_token_ids = torch.where(
            is_greedy,
            greedy_token_ids,
            next_token_ids,
        )
    return next_token_ids, probs